INDUSTRIAL ACTIVITIES STORMWATER POLLUTION PREVENTION PLAN

for

East County Bus Maintenance Facility

Facility Address:
1213 Johnson Avenue

Waste Discharge Identification (WDID):
9 37I020896

Exceedance Response Action (ERA) Status:
Baseline

Legally Responsible Person (LRP):
Metropolitan Transit System (MTS)
1255 Imperial Ave Suite 900
Karen Landers
619-557-4512

Duly Authorized Representative:
Kyle Whatley 619-446-4046
Mylene Noceda 619-643-3180

Prepared for:
Metropolitan Transit System (MTS)
1255 Imperial Avenue, Suite 1000
San Diego, CA 92101

SWPPP Prepared by:
Kimley-Horn and Associates
401 B. Street Suite 600
San Diego, Ca 92101

SWPPP Preparation Date
July 2015
Table of Contents

Legally Responsible Person.. 1
Amendment Log .. 2
Section 1 SWPPP Requirements ... 3
 1.1 Introduction .. 3
 1.2 Permit Registration Documents .. 3
 1.3 SWPPP Availability and Implementation ... 4
 1.4 Pollution Prevention Team ... 4
 1.5 Duly Authorized Representatives ... 5
 1.6 Permits and Governing Documents .. 5
 1.7 SWPPP Amendments .. 5
 1.8 Retention of Records ... 6
 1.9 Exceedance response actions (ERAs) .. 7
 1.10 Annual Comprehensive Facility Compliance Evaluation .. 7
 1.11 Annual Report ... 8
 1.12 Termination and Changes to general Permit Coverage .. 8
Section 2 Facility Information .. 9
 2.1 Facility Description ... 9
 2.1.1 Facility Location .. 9
 2.1.2 Facility Operations .. 9
 2.1.3 Existing Conditions ... 9
 2.1.4 Description of Drainage Areas and Existing Drainage .. 10
 2.1.5 Stormwater Run-On from Offsite Areas .. 10
 2.1.6 Geology and Groundwater .. 10
 2.2 Operations Schedule .. 11
 2.3 Pollutant Source Assessment ... 11
 2.3.1 Description of Potential Pollutant Sources .. 11
 2.3.2 Significant Spills and Leaks .. 15
 2.4 Identification of Non-Stormwater Discharges (NSWDS) ... 18
 2.5 Required Site Map(s) Information ... 19
Section 3 Best Management Practices .. 21
3.1 Minimum BMPs ... 21
 3.1.1 Good Housekeeping .. 23
 3.1.2 Preventative Maintenance ... 24
 3.1.3 Spill and Leak Prevention and Response 24
 3.1.4 Material Handling and Waste Management 25
 3.1.5 Erosion and Sediment Controls 27
 3.1.6 Employee Training Program 27
 3.1.7 Quality Assurance and Record Keeping 28
3.2 Advanced BMPs ... 29
 3.2.1 Exposure Minimization BMPs 29
 3.2.2 Stormwater Containment and Discharge Reduction BMPs . 30
 3.2.3 Treatment Control BMPs .. 32
 3.2.4 Other Advanced BMPs .. 32
3.3 BMP Summary Table .. 34

Section 4 BMP Implementation .. 37
 4.1 BMP Implementation Schedule 37
 4.2 BMP Inspection and Maintenance 38

Section 5 Monitoring Implementation Plan 39
 5.1 Purpose ... 39
 5.2 Weather and Rain Event Tracking 39
 5.3 Monitoring Locations .. 39
 5.4 Sample Collection and Visual Observation Exceptions 39
 5.5 Visual Observation Procedures 40
 5.5.1 Monthly Visual Observations 40
 5.5.1.1 Outdoor Facility Operations Observations 40
 5.5.1.2 BMP Observations ... 40
 5.5.1.3 Non-Stormwater Discharge Observations 41
 5.5.2 Sampling Event Visual Observations 41
 5.5.3 Visual Monitoring Procedures 41
 5.5.4 Visual Monitoring Follow-Up and Reporting 42
 5.5.5 Visual Monitoring Locations 42
 5.6 Sampling and Analysis Procedures 43
 5.6.1 Sampling Schedule .. 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.2</td>
<td>Sampling Locations</td>
<td>43</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Monitoring Preparation</td>
<td>44</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Analytical Constituents</td>
<td>44</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Sample Collection</td>
<td>45</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Sample Analysis</td>
<td>46</td>
</tr>
<tr>
<td>5.6.7</td>
<td>Data Evaluation and Reporting</td>
<td>49</td>
</tr>
<tr>
<td>5.7</td>
<td>Training of Sampling Personnel</td>
<td>49</td>
</tr>
<tr>
<td>5.8</td>
<td>Sample Collection and Handling</td>
<td>49</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Sample Collection</td>
<td>49</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Sample Handling</td>
<td>50</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Sample Documentation Procedures</td>
<td>51</td>
</tr>
<tr>
<td>5.9</td>
<td>Quality Assurance and Quality Control</td>
<td>51</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Field Logs</td>
<td>51</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Clean Sampling Techniques</td>
<td>52</td>
</tr>
<tr>
<td>5.9.3</td>
<td>Chain of Custody</td>
<td>52</td>
</tr>
<tr>
<td>5.9.4</td>
<td>QA/QC Samples</td>
<td>52</td>
</tr>
<tr>
<td>5.9.4.1</td>
<td>Field Duplicates</td>
<td>52</td>
</tr>
<tr>
<td>5.9.4.2</td>
<td>Equipment Blanks</td>
<td>53</td>
</tr>
<tr>
<td>5.9.4.3</td>
<td>Field Blanks</td>
<td>53</td>
</tr>
<tr>
<td>5.9.4.4</td>
<td>Travel Blanks</td>
<td>53</td>
</tr>
<tr>
<td>5.9.5</td>
<td>Data Verification</td>
<td>53</td>
</tr>
<tr>
<td>5.10</td>
<td>Records Retention</td>
<td>54</td>
</tr>
<tr>
<td>MIP Attachment 1:</td>
<td>Weather Reports</td>
<td>55</td>
</tr>
<tr>
<td>MIP Attachment 2:</td>
<td>Monitoring Records</td>
<td>56</td>
</tr>
<tr>
<td>MIP Attachment 3:</td>
<td>Example Forms</td>
<td>57</td>
</tr>
<tr>
<td>MIP Attachment 4:</td>
<td>Field Meter Instructions</td>
<td>63</td>
</tr>
<tr>
<td>MIP Attachment 5:</td>
<td>Other Regulatory Documents</td>
<td>64</td>
</tr>
<tr>
<td>Section 6</td>
<td>References</td>
<td>65</td>
</tr>
<tr>
<td>Appendix A:</td>
<td>Site Map(s)</td>
<td>66</td>
</tr>
<tr>
<td>Appendix B:</td>
<td>Permit Registration Documents</td>
<td>67</td>
</tr>
<tr>
<td>Appendix C:</td>
<td>Training Reporting Form</td>
<td>68</td>
</tr>
<tr>
<td>Appendix D:</td>
<td>Responsible Parties</td>
<td>70</td>
</tr>
<tr>
<td>Appendix E:</td>
<td>SWPPP Amendment Certifications</td>
<td>73</td>
</tr>
<tr>
<td>Appendix</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Calculations</td>
<td>75</td>
</tr>
<tr>
<td>Appendix G</td>
<td>CASQA Stormwater BMP Handbook Portal: Industrial and Commercial Fact Sheets</td>
<td>76</td>
</tr>
<tr>
<td>Appendix H</td>
<td>BMP Implementation Log</td>
<td>77</td>
</tr>
<tr>
<td>Appendix I</td>
<td>BMP Observation Forms</td>
<td>79</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Industrial General Permit</td>
<td>85</td>
</tr>
</tbody>
</table>
Legally Responsible Person

Approval and Certification of the Stormwater Pollution Prevention Plan

Facility Name: East County Bus Maintenance Facility

Waste Discharge Identification (WDID): 9371020896

"I certify under penalty of law that this document and all Attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, to the best of my knowledge and belief, the information submitted is, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

Karen Landers

Legally Responsible Person

Signature of Duly Authorized Representative of Legally Responsible Person or Approved Signatory

Karen Landers

Date

7-9-15

Name of Duly Authorized Representative of Legally Responsible Person or Approved Signatory

Telephone Number

619 557 4512
Amendment Log

Facility Name: East County Bus Maintenance Facility

Waste Discharge Identification (WDID): 9 371020896

<table>
<thead>
<tr>
<th>Amendment No.</th>
<th>Date</th>
<th>Page and Section No.</th>
<th>Requested By</th>
<th>Brief Description of Amendment; include reason for change, site location, and BMP modifications.</th>
<th>Prepared and Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8-5-16</td>
<td>Page 5, section1.4</td>
<td>MTS</td>
<td>Revision to pollution prevention team.</td>
<td>T.Moreno</td>
</tr>
<tr>
<td>1</td>
<td>8-5-16</td>
<td>Page 6, Section 1.5</td>
<td>MTS</td>
<td>Revision to duly authorized person.</td>
<td>T.Moreno</td>
</tr>
<tr>
<td>1</td>
<td>8-5-16</td>
<td>Page 10, Section 2.1.4</td>
<td>MTS</td>
<td>Oil/water separator reference removed.</td>
<td>T.Moreno</td>
</tr>
<tr>
<td>1</td>
<td>8-5-16</td>
<td>Page 32, Section 3.2.3</td>
<td>MTS</td>
<td>Oil/water separator reference removed.</td>
<td>T.Moreno</td>
</tr>
<tr>
<td>1</td>
<td>8-5-16</td>
<td>Page 41, Section 5.5.3</td>
<td>MTS</td>
<td>Revision to assigned inspector.</td>
<td>T.Moreno</td>
</tr>
<tr>
<td>1</td>
<td>8-5-16</td>
<td>Page 44, Section 5.6.3</td>
<td>MTS</td>
<td>Revision to monitoring.</td>
<td>T.Moreno</td>
</tr>
<tr>
<td>1</td>
<td>8-5-16</td>
<td>Page 46, Section 5.6.6</td>
<td>MTS</td>
<td>Laboratory added.</td>
<td>T.Moreno</td>
</tr>
</tbody>
</table>
Section 1 SWPPP Requirements

1.1 INTRODUCTION
The East County Bus Maintenance Facility site comprises approximately 3.03 acres and is located at 1213 Johnson Avenue in the City of El Cajon, California. The property is owned by MTS and is being operated by Transdev Services. The facility location is shown on the Site Maps in Appendix A.

This Stormwater Pollution Prevention Plan (SWPPP) is designed to comply with California’s General Permit for Stormwater Discharges Associated with Industrial Activities (General Permit) Order No. 2014-0057-DWQ (NPDES No. CAS000001) issued by the State Water Resources Control Board (State Water Board). This SWPPP has been prepared following the SWPPP Template provided on the California Stormwater Quality Association Stormwater Best Management Practice Handbook Portal: Industrial and Commercial (CASQA 2014). In accordance with the General Permit, Section X.A, this SWPPP contains the following required elements:

- Facility Name and Contact Information;
- Site Map;
- List of Significant Industrial Materials;
- Description of Potential Pollution Sources;
- Assessment of Potential Pollutant Sources;
- Minimum BMPs;
- Advanced BMPs, if applicable;
- Monitoring Implementation Plan (MIP);
- Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation); and,
- Date that SWPPP was Initially Prepared and the Date of Each SWPPP Amendment, if Applicable.

1.2 PERMIT REGISTRATION DOCUMENTS
Required Permit Registration Documents (PRDs) were submitted to the State Water Board via the Stormwater Multi Application and Report Tracking System (SMARTS) by the Legally Responsible Person (LRP), or authorized personnel (i.e., Approved Signatory) under the direction of the LRP. The project-specific PRDs include:

1. Notice of Intent (NOI);
2. Signed Certification Statement (LRP Certification is provided electronically with SMARTS PRD submittal);
3. Site Map(s);
4. SWPPP; and
5. Annual Fee.

- The Site Maps can be found in Appendix A. A copy of the submitted PRDs are also kept in Appendix B of the SWPPP along with the Waste Discharge Identification (WDID) confirmation.
- The SWPPP uploaded into SMARTS should not include a copy of the General Permit.
- In the event of future significant changes to the facility layout, the Discharger will certify and submit new PRDs via SMARTS.

1.3 SWPPP AVAILABILITY AND IMPLEMENTATION

The SWPPP is available on-site to all employees during all hours of operation (see Section 2.5 for the Operations Schedule), and will be made available upon request by a State or Municipal inspector. The SWPPP will be implemented by July 1, 2015.

1.4 POLLUTION PREVENTION TEAM

Facility staff that have been designated as Pollution Prevention Team members are listed below in Table 1.1., along with their responsibilities and duties. A list of alternate team members is also provided, and these personnel will perform SWPPP activities when regular members of the Pollution Prevention Team are absent or unavailable. This table will be updated as needed when there are changes to staff and staff responsibilities. All team members will be trained to perform the duties assigned to them. Employee training logs are provided in Appendix C.

QISPs identified for the project are identified in Appendix D. The QISP will have primary responsibility for providing training to the appropriate team members assigned to perform the activities required in this SWPPP.

Table 1.1 Pollution Prevention Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Phone Number</th>
<th>Responsibilities and Duties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oswaldo Meneses</td>
<td>Transit Operations Specialist</td>
<td>619-238-0100 ext. 6589</td>
<td>Stormwater Compliance</td>
</tr>
<tr>
<td>Jay Ramirez</td>
<td>Maintenance Manager of South Bay</td>
<td>(619) 409-4907</td>
<td>Stormwater Compliance</td>
</tr>
<tr>
<td>Ray Bravo</td>
<td>Maintenance Trainer</td>
<td>(619) 409-9058</td>
<td>Stormwater Compliance</td>
</tr>
<tr>
<td>Gabriel Lucero</td>
<td>QA Administrator</td>
<td>(619) 409-9008</td>
<td>Stormwater Compliance</td>
</tr>
<tr>
<td>Armando Acero</td>
<td>Maintenance Manager, Transdev Services</td>
<td>619-608-4774</td>
<td>Stormwater Compliance</td>
</tr>
<tr>
<td>John McKee</td>
<td>Facility Maintenance manager, Transdev Services</td>
<td>619-279-6945</td>
<td>Stormwater Compliance</td>
</tr>
</tbody>
</table>
1.5 DULY AUTHORIZED REPRESENTATIVES

Duly Authorized Representatives who are responsible for SWPPP implementation and have authority to sign PRDs are listed below in Table 1.2. Written authorizations from the LRP for these individuals are provided in Appendix D.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oswaldo Meneses</td>
<td>Transit Operations Specialist</td>
<td>619-238-0100 ext. 6589</td>
</tr>
<tr>
<td>Mylene Noceda</td>
<td>Environmental Health and Safety Specialist</td>
<td>619-643-3180</td>
</tr>
</tbody>
</table>

1.6 PERMITS AND GOVERNING DOCUMENTS

In addition to the General Permit, the following documents have been taken into account while preparing this SWPPP:

- Regional Water Board requirements;
- Basin Plan requirements;
- TMDL Requirements;
- Spill Prevention Control and Countermeasures Plan;
- Hazardous Material Business Plan;
- Hazardous Waste Regulations and Permits;
- Air Quality Regulations and Permits;
- Clean Water Act Section 401 Water Quality Certifications and 404 Permits.

1.7 SWPPP AMENDMENTS

This SWPPP will be amended or revised as needed. A list of amendments (Amendment Log) is included in the front of this SWPPP (page 7), and amendment certifications are included in Appendix E. The Amendment Log will include the date of initial preparation and the date of each amendment. The SWPPP should be revised when:

- There is a General Permit violation;
- There is a reduction or increase in the total industrial area exposed to stormwater;
- BMPs do not meet the objectives of reducing or eliminating pollutants in stormwater discharges;
• There is a change in industrial operations which may affect the discharge of pollutants to surface waters, groundwater(s), or a municipal separate storm sewer system (MS4);
• There is a change to the parties responsible for implementing the SWPPP; or
• Otherwise deemed necessary by the QISP.

The following items will be included in each amendment:

• Who requested the amendment;
• The location of proposed change;
• The reason for change;
• The original BMP(s) proposed, if any; and
• The new BMP(s) proposed.

Amendments will be logged at the front of the SWPPP and certification kept in Appendix E. The SWPPP text will be revised replaced, and/or hand annotated as necessary to properly convey the amendment. SWPPP amendments must be certified and submitted by the LRP or their designated Duly Authorized Representative via SMARTS within 30 days whenever the SWPPP contains significant revisions. With the exception of significant revisions, SWPPP changes will be certified and uploaded to SMARTS once every three (3) months in the reporting year.

1.8 RETENTION OF RECORDS

• Paper or electronic records of documents required by this SWPPP will be retained for a minimum of five (5) years from the date generated or date submitted, whichever is later, for the following items:
 • Employee Training Records;
 • BMP Implementation Records;
 • Spill and Clean-up Related Records;
 • Records of Sampling and Analysis Information
 o The date, exact location, and time of sampling or measurement;
 o The date(s) analyses were performed;
 o The individual(s) that performed the analyses;
 o The analytical techniques or methods used; and
 o The results of such analyses;
 • Records of Visual Observations
 o The date
 o The industrial areas/drainage areas of the facility observed during
the inspection (Location);
 o The approximate time of the observation;
 o Presence and probable source of observed pollutants; and
 o Name of the individual(s) that conducted the observations;

- Response to the observations including identification of SWPPP revisions if needed.
- Level 1 ERA Reports;
- Level 2 ERA Action Plan;
- Level 2 ERA Technical Report; and
- Annual Reports from SMARTS (checklist and any explanations).

Copies of these records will be available for review by the Water Board’s staff at the facility during scheduled facility operating hours. Upon written request by U.S. EPA or the local MS4, Dischargers will provide paper or electronic copies of requested records to the Water Boards, U.S. EPA, or local MS4 within ten (10) working days from receipt of the request.

1.9 **EXCEEDANCE RESPONSE ACTIONS (ERAs)**

If a General Permit NAL exceedance occurs in a given reporting year, a Level 1 ERA Evaluation and a Level 1 ERA Report will be required in the following year, or, if in a subsequent year, a Level 2 ERA Action Plan and a Level 2 ERA Report will be required in accordance with the General Permit. The results of either of the ERA reports may require that the SWPPP be amended.

1.10 **ANNUAL COMPREHENSIVE FACILITY COMPLIANCE EVALUATION**

The General Permit (Section XV) requires the Discharger to conduct one Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation) for each reporting year (July 1 to June 30). Annual Evaluations will be conducted at least eight (8) months and not more than sixteen (16) months after the previous Annual Evaluation. The planned window for conducting the Annual Evaluation is between April and June of each year. The SWPPP will be revised, as appropriate based on the results of the Annual Evaluation, and the revisions will be implemented within 90 days of the Annual Evaluation.

At a minimum, Annual Evaluations will consist of:

- A review of all sampling, visual observation, and inspection and monitoring records and sampling and analysis results conducted during the previous reporting year;
- A visual inspection of all areas of industrial activity and associated potential pollutant sources for evidence of, or the potential for, pollutants entering the stormwater conveyance system;
- A visual inspection of all drainage areas previously identified as having no exposure to industrial activities and materials in accordance with the definitions in Section XVII;
- A visual inspection of equipment needed to implement the BMPs;
• A visual inspection of any BMPs;
• A review and effectiveness assessment of all BMPs for each area of industrial activity and associated potential pollutant sources to determine if the BMPs are properly designed, implemented, and are effective in reducing and preventing pollutants in industrial stormwater discharges and authorized NSWDs; and
• An assessment of any other factors needed to comply with the Annual Reporting requirements in General Permit Section XVI.B.

1.11 ANNUAL REPORT
The Annual Report will be prepared, certified, and electronically submitted no later than July 15th following each reporting year using the standardized format and checklists in SMARTS based on the reporting requirements identified in Section XVI of the General Permit. Annual reports will be submitted in SMARTS and in accordance with information required by the online forms.

1.12 TERMINATION AND CHANGES TO GENERAL PERMIT COVERAGE
When any of the following conditions occur, termination of coverage under the General Permit will be requested by certifying and submitting a Notice of Termination (NOT) via SMARTS:

• Operation of the facility has been transferred to another entity;
• The facility has ceased operations, completed closure activities, and removed all industrial related pollutant generating sources;
• The facility’s operations have changed and are no longer subject to the General Permit.

The SWPPP and all of the provisions of the General Permit will be complied with until a valid NOT is received and accepted by the Board.

If ownership changes, the new owner of the facility will be notified of the General Permit and regulatory requirements for permit coverage.
Section 2 Facility Information

2.1 FACILITY DESCRIPTION

2.1.1 Facility Location

The East County Bus Maintenance facility comprises approximately 3.03 acres and is located at 1213 Johnson Avenue, in the City of El Cajon, California. The facility is located approximately 2,000 feet south of Gillespie Field and 2 miles east of CA-125, and is approximately 1,200 feet east of a concrete lined channel at Vernon Way between Johnson Avenue and Marshall Avenue. The concrete lined channel flows north and discharges to Forester Creek at Prospect Avenue. Forester Creek then confluences with the San Diego River approximately 1 mile downstream. The facility is located at 32.812280/-116.968534 [Latitude/Longitude] and is identified on the Site Maps in Appendix A.

The project discharges to Forrester Creek and San Diego River that does have adopted TMDLs and is listed for water quality impairment on the most recent (2010) 303(d)-list for the following impairments:

- Forrester Creek: fecal coliform, pH, selenium, and total dissolved solids
- San Diego River: enterococcus, fecal coliform, low dissolved oxygen, manganese, nitrogen, phosphorus, total dissolved solids, and toxicity.
- Forrester Creek and San Diego River have adopted a bacteria TMDL.

2.1.2 Facility Operations

Operations at the East County Bus Maintenance facility consist of all activities required for maintenance services for San Diego’s mass transit system. These services include: lubrication, brake work, cleaning and washing, minor body work; and, overall bus maintenance. A list of specific industrial activities is provided below:

- Vehicle and equipment maintenance areas
- Fueling Areas
- Storage areas
- Dust particulate generating areas
- Outdoor Vehicle parking and equipment storage areas
- Material Handling and storage areas
- Vehicles and equipment washing areas
- Waste Storage Areas
- Processing Areas
- Loading/Unloading Areas

2.1.3 Existing Conditions

The facility site consists of a bus maintenance facility with administration support building; bus maintenance, fueling, and service operations. These operations include diesel fueling stations and
a bus wash facility. Large paved surface parking areas to accommodate bus and employee vehicles. Of the developed area, 0.5 acres of industrial activities are directly exposed to precipitation and stormwater runoff. Existing BMPs at this facility are described in Section 3.

Existing sources of contamination at the site include: underground storage tanks (UST) previously located on the site that were properly removed and the site remediated and electrical transformers onsite could contain polychlorinated biphenyls (PCBs).

2.1.4 Description of Drainage Areas and Existing Drainage

The facility is divided into two drainage areas: Watershed A and Watershed B, as shown on the Site Map in Appendix A. The Site Map shows the area layout, including the general site topography, storm drainage system, drainage inlets, its respective drainage areas, and discharge locations.

The facility site is relatively level and slopes east to west. The elevation of the project site ranges from 400 to 395 feet above mean sea level (msl). Surface drainage at the site currently flows to the from east to west with two storm drain interceptions at the northwest and southwest corners, the storm drains run to the west and discharges to a concrete lined channel at Vernon Way between Johnson Avenue and Marshall Avenue. The concrete lined channel flows north and discharges to Forester Creek at Prospect Avenue. Forester Creek then confluenes with the San Diego River approximately 1 mile downstream. Stormwater is conveyed through surface runoff and storm drain systems prior to leaving the project site.

Detailed descriptions of all drainage areas are provided below.

Watershed A: This watershed is approximately 75% impervious area. Activities include two buildings for storage, a building for bus wash and maintenance activities, diesel storage and dispenser, and paved surface for parking. A portion of the site is made up of gravel and also used for parking.

Watershed B: This watershed is approximately 25% impervious area and flows to a 12” RCP pipe located at the southwest corner of the site, which connects to a curb inlet on Vernon Way. Activities include a building for storage, buildings for training, and paved surface for parking. A portion of the site is made up of gravel and also used for parking.

2.1.5 Stormwater Run-On from Offsite Areas

There is no anticipated offsite run-on to this site because there are no up-gradient drainage areas adjacent to the site. The surrounding properties discharge runoff into the adjacent streets.

2.1.6 Geology and Groundwater

The site has about 35% grave areal used for parking; however, there are no infiltration BMPs.

The site is underlain by artificial fill soil to 2 feet. The fill typically consists of loose to medium dense, brown to reddish brown, moist, clay to sandy clay and sand silt. The fill is underlain by undivided alluvium and colluvium to a maximum depth of 23 feet. This unit consist of soft to hard lean clay to sandy clay/sandy silt and dense to very dense, silty sand, clayey sand and
poorly graded sand. Granitoid rock characteristic of the Southern California Batholith was observed to underlie the alluvium and colluvium. Groundwater occurs beneath the site at approximately 18 and 28 feet below the ground surface (bgs). However, the groundwater table may be as shallow as 15 feet bgs during or following seasons of high precipitation.

2.2 OPERATIONS SCHEDULE

The East County Bus Maintenance facility operates 24 hours a day Monday through Saturdays and in the PM on Sunday after 7 PM. Industrial activities during this time period consist of required maintenance services for San Diego’s mass transit system. Variations in actual operating hours may occur as necessary.

This SWPPP will be implemented, and a copy made available to all facility staff at all times. A copy will be available to regulatory agency personnel upon request.

If industrial activities are temporarily suspended for ten (10) or more consecutive calendar days during a reporting year, BMPs that are necessary to achieve compliance with this General Permit during the temporary suspension of the industrial activity will be identified and incorporated into the SWPPP.

2.3 POLLUTANT SOURCE ASSESSMENT

This section presents a list of all industrial materials and potential pollutant sources at the East County Bus Maintenance facility. It identifies specific pollutants associated with these sources and pollutant sources that are most susceptible to stormwater exposure. A summary of significant spill and leaks that have occurred onsite is also provided.

2.3.1 Description of Potential Pollutant Sources

Table 2.1 includes a list of industrial activities and associated materials that are anticipated to be used onsite. These activities and associated materials will or could potentially contribute pollutants to stormwater runoff. The anticipated activities and associated pollutants provided in Table 2.1 are the basis for selecting the BMPs for the facility as described in Section 3.

Locations of all material stockpiles, storage areas, anticipated pollutants, and associated BMPs are show on the Site Maps in Appendix A.
<table>
<thead>
<tr>
<th>Industrial Activity</th>
<th>Associated Industrial Materials</th>
<th>Material Quantity</th>
<th>Material Physical Characteristics</th>
<th>Material Location</th>
<th>Associated Pollutants</th>
<th>Stormwater Exposure Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle and Equipment Washing</td>
<td>Oils and greases, phosphates, and suspended solids</td>
<td>See material list in Table 2.2</td>
<td>See material list in Table 2.2</td>
<td>1213 Johnson site has a bus wash located east of the building that is covered, and a chassis wash located east next to the bus wash that is also covered</td>
<td>Oils and greases, phosphates, and suspended solids</td>
<td>Vehicle and equipment washing is covered, no stormwater exposure.</td>
</tr>
</tbody>
</table>
Table 2.1 Industrial Activities and Associated Materials

<table>
<thead>
<tr>
<th>Industrial Activity</th>
<th>Associated Industrial Materials</th>
<th>Material Quantity</th>
<th>Material Physical Characteristics</th>
<th>Material Location</th>
<th>Associated Pollutants</th>
<th>Stormwater Exposure Pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Storage</td>
<td>Solvents, waste petroleum, and automotive fluids.</td>
<td>See material list in Table 2.2</td>
<td>See material list in Table 2.2</td>
<td>There are three trash dumpsters, and one recycle dumpster in the southeast end of 1213 Johnson lot.</td>
<td>Solvents, waste petroleum, and automotive fluids.</td>
<td>All dumpsters have secured lids, no stormwater exposure.</td>
</tr>
<tr>
<td>Processing</td>
<td>Oil.</td>
<td>See material list in Table 2.2</td>
<td>See material list in Table 2.2</td>
<td>Small shed located just north of the 1213 Johnson building that stores the building’s air compressor only.</td>
<td>Oil.</td>
<td>Processing located in storm resistant shelter, no stormwater exposure.</td>
</tr>
<tr>
<td>Industrial Activity</td>
<td>Associated Industrial Materials</td>
<td>Material Quantity</td>
<td>Material Physical Characteristics</td>
<td>Material Location</td>
<td>Associated Pollutants</td>
<td>Stormwater Exposure Pathway</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>--------------------------------]</td>
<td>-------------------</td>
<td>----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Loading/Unloading</td>
<td>Automotive fluids.</td>
<td>See material list in Table 2.2</td>
<td>See material list in Table 2.2</td>
<td>The loading and unloading of materials/products/office supplies are all delivered to the 1213 Johnson building</td>
<td>Automotive fluids.</td>
<td>All automotive fluids are delivered in sealed containers and delivered directly into the building through a service bay</td>
</tr>
<tr>
<td>Fueling Area</td>
<td>Diesel</td>
<td>See material list in Table 2.2</td>
<td>See material list in Table 2.2</td>
<td>North of 1213 Johnson Building.</td>
<td>Diesel</td>
<td>The fueling island is exposed to runoff which sheets flows to the north west corner of the site.</td>
</tr>
</tbody>
</table>
2.3.2 Significant Spills and Leaks

Table 2.2 includes a list of industrial materials where spills and leaks have potential to occur, and includes material characteristics, quantities, locations, and containers. Spills and leaks will be prevented by implementing the BMPs described in Section 3.

There have been no historical spills at this site. If significant spills or leaks have occurred onsite within the previous five-year period include the following: the location, characteristics, and approximate quantity of the materials spilled or leaked; approximate quantity of the materials discharged from the facility’s stormwater conveyance system; the cleanup or remedial actions that have occurred or are planned; the approximate remaining quantity of materials that have the potential to be discharged; and the preventive measures taken to ensure spills or leaks of the material do not reoccur. Summarize this information in Table 2.3 in the event of a spill or leak.

<table>
<thead>
<tr>
<th>Industrial Material</th>
<th>Material Physical Characteristics</th>
<th>Material Quantity</th>
<th>Material Container</th>
<th>Material Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>Liquid</td>
<td>250 Cu. Feet</td>
<td>Cylinder</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Brake Flush CA</td>
<td>Liquid</td>
<td>55 gallons</td>
<td>Steel Drum</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Diesel</td>
<td>Liquid</td>
<td>6,000 gallons</td>
<td>Underground storage tank</td>
<td>Northeast of the maintenance bldg.</td>
</tr>
<tr>
<td>Emergency Generator (Maintenance Bldg.)</td>
<td>Liquid</td>
<td>210 gallons</td>
<td>Contained inside generator</td>
<td>North of the maintenance bldg.</td>
</tr>
<tr>
<td>Emergency Generator (CNG Station)</td>
<td>Liquid</td>
<td>1500 gallons</td>
<td>Contained inside generator</td>
<td>North of the maintenance bldg.</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>Liquid</td>
<td>165 gallons</td>
<td>Plastic/Non-metallic drum</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Industrial Material</td>
<td>Material Physical Characteristics</td>
<td>Material Quantity</td>
<td>Material Container</td>
<td>Material Location</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Freon</td>
<td>Liquid</td>
<td>150 Cu. Feet</td>
<td>Cylinder</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Glass Cleaner</td>
<td>Liquid</td>
<td>55 gallons</td>
<td>Plastic/Non-metallic drum</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Liquified Petroleum Gas (lp)</td>
<td>Liquid</td>
<td>125 Cu. Feet</td>
<td>Cylinder</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Lubricating Oils</td>
<td>Liquid</td>
<td>550 gallons</td>
<td>Steel Drum</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Oil/Water Separator</td>
<td>Liquid</td>
<td>900 gallons</td>
<td>Underground storage Tank</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Oxygen</td>
<td>Gas</td>
<td>300 Cu. Feet</td>
<td>Cylinder</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Rinse Aid</td>
<td>Liquid</td>
<td>55 gallons</td>
<td>Plastic/Non-metallic drum</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Used Antifreeze</td>
<td>Liquid</td>
<td>110 gallons</td>
<td>Plastic/Non-metallic drum</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Used Oil</td>
<td>Liquid</td>
<td>200 gallons</td>
<td>Aboveground Storage Tank</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Wash and Wax</td>
<td>Liquid</td>
<td>55 gallons</td>
<td>Plastic/Non-metallic drum</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Used Oil Absorbent</td>
<td>Liquid</td>
<td>800 pounds</td>
<td>Steel drum</td>
<td>Maintenance Bldg.</td>
</tr>
</tbody>
</table>
Table 2.2 Potential Material Spills and Leaks

<table>
<thead>
<tr>
<th>Industrial Material</th>
<th>Material Physical Characteristics</th>
<th>Material Quantity</th>
<th>Material Container</th>
<th>Material Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used Filters</td>
<td>Solid</td>
<td>1,000 pounds</td>
<td>Steel drum</td>
<td>Maintenance Bldg.</td>
</tr>
<tr>
<td>Solid Waste (Trash)</td>
<td>Solid</td>
<td>3 dumpsters</td>
<td>Dumpsters</td>
<td>Southeast of maintenance Bldg.</td>
</tr>
<tr>
<td>Solid Waste (Recycle)</td>
<td>Solid</td>
<td>1 dumpster</td>
<td>Dumpster</td>
<td>Southeast of maintenance Bldg.</td>
</tr>
<tr>
<td>Diesel</td>
<td>Liquid</td>
<td>12,000 gallons</td>
<td>Underground Storage Tank</td>
<td>Fueling Area</td>
</tr>
</tbody>
</table>

Table 2.3 Spills and Leaks within Previous Five-Year Period

<table>
<thead>
<tr>
<th>Industrial Material</th>
<th>Material Physical Characteristics</th>
<th>Location of Spill or Leak</th>
<th>Quantity Spilled or Leaked</th>
<th>Quantity Discharged from Site</th>
<th>Remaining Quantity with Potential for Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4 IDENTIFICATION OF NON-STORMWATER DISCHARGES (NSWDs)

Non-stormwater discharges (NSWDs) consist of discharges which do not originate from precipitation events. The General Permit provides allowances for specified NSWDs provided they:

- Do not cause erosion;
- Do not carry other pollutants;
- Are not prohibited by the local MS4; and
- Do not require a separate NPDES Permit from the Regional Water Board.

NSWDs into storm drainage systems or waterways, which are not authorized under the General Permit and listed in the SWPPP, or authorized under a separate NPDES permit, are prohibited.

Non-stormwater discharges that are authorized at this facility include the following:

- None

These authorized NSWDs will be managed with the stormwater and non-stormwater BMPs described in Section 3 of this SWPPP. These BMPs are implemented to:

- Reduce or prevent the contact of authorized NSWDs with materials or equipment that are potential sources of pollutants;
- Reduce, to the extent practicable, the flow or volume of authorized NSWDs;
- Ensure that authorized NSWDs do not contain quantities of pollutants that cause or contribute to an exceedance of a water quality standards; and
- Reduce or prevent discharges of pollutants in authorized NSWDs in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.

Monthly visual observations will be conducted according to the General Permit (Section XI.A.1) for NSWDs and sources to ensure adequate BMP implementation and effectiveness. Monthly visual observations include observations for evidence of unauthorized NSWDs.

Activities at this site that may result in unauthorized non-stormwater discharges include:

- Vehicle and equipment maintenance areas (vehicle fluids, greases, solvents, fuels, etc.)
- Outdoor vehicle parking and equipment storage (leaking vehicle fluids, greases, etc.)
- Liquid storage in aboveground tanks (motor oil, vehicle fluids, etc.)
- Washing vehicles and equipment (soaps, vehicle fluids, greases, fluids, etc.)
- Vehicle fueling (petroleum, vehicle fluids, etc.)
- Vehicle wash water where the wash water is being discharged to the ground
surface of storm drains instead of being discharged to the sanitary sewer.

- Floor wash waster where the wash water is being discharged to the ground surface or storm drains instead of being discharged to the sanitary sewer.
- Any water generated from the washing of the parking, maintenance, or fueling areas at the facility.
- Any outdoor material storage areas where materials have leaked onto the ground.

Steps will be taken, including the implementation of appropriate BMPs as defined in Section 3, to ensure that unauthorized NSWDS are eliminated, controlled, disposed off-site, or treated on-site.

The following discharges are authorized by a regional NPDES permit:

- NONE

2.5 Required Site Map(s) Information

The facility’s Site Maps are provided in Appendix A, and includes all information required by the General Permit. The maps include information regarding the facility boundary and stormwater drainage areas, nearby water bodies, locations of stormwater collection and conveyance systems including outfalls, locations and descriptions of all industrial activities and materials, and locations and descriptions of all structural control measures.

A summary of all information provided in the Site Maps is provided in Table 2.4 below.

<table>
<thead>
<tr>
<th>Included on Site Map(s)?</th>
<th>Required Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>The facility boundary</td>
</tr>
<tr>
<td>Yes</td>
<td>Stormwater drainage areas within the facility boundary</td>
</tr>
<tr>
<td>N/A</td>
<td>Portions of any drainage area impacted by discharges from surrounding areas</td>
</tr>
<tr>
<td>Yes</td>
<td>Flow direction of each drainage area</td>
</tr>
<tr>
<td>N/A</td>
<td>On-facility surface water bodies</td>
</tr>
<tr>
<td>N/A</td>
<td>Areas of soil erosion</td>
</tr>
<tr>
<td>N/A</td>
<td>Location(s) of nearby water bodies (such as rivers, lakes, wetlands, etc.)</td>
</tr>
<tr>
<td>Yes</td>
<td>Location(s) of municipal storm drain inlets that may receive the facility’s industrial stormwater discharges and authorized NSWDS</td>
</tr>
<tr>
<td>Yes</td>
<td>Locations of stormwater collection and conveyance systems and associated points of discharge, and direction of flow</td>
</tr>
<tr>
<td>Yes</td>
<td>Any structural control measures (that affect industrial stormwater discharges, authorized NSWDS, and run-on)</td>
</tr>
<tr>
<td>Yes</td>
<td>All impervious areas of the facility, including paved areas, buildings, covered storage areas, or other roofed structures</td>
</tr>
<tr>
<td>Included on Site Map(s)?</td>
<td>Required Element</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Yes</td>
<td>Locations where materials are directly exposed to precipitation</td>
</tr>
<tr>
<td>Yes</td>
<td>Locations where significant spills or leaks (Section X.G.1.d of the General Permit) have occurred</td>
</tr>
<tr>
<td>Yes</td>
<td>Areas of industrial activity subject to the General Permit</td>
</tr>
<tr>
<td>Yes</td>
<td>All storage areas and storage tanks</td>
</tr>
<tr>
<td>Yes</td>
<td>Shipping and receiving areas</td>
</tr>
<tr>
<td>Yes</td>
<td>Fueling areas</td>
</tr>
<tr>
<td>Yes</td>
<td>Vehicle and equipment storage/maintenance areas</td>
</tr>
<tr>
<td>Yes</td>
<td>Material handling and processing areas</td>
</tr>
<tr>
<td>Yes</td>
<td>Waste treatment and disposal areas</td>
</tr>
<tr>
<td>Yes</td>
<td>Dust or particulate generating areas</td>
</tr>
<tr>
<td>Yes</td>
<td>Cleaning and material reuse areas</td>
</tr>
<tr>
<td>Yes</td>
<td>Any other areas of industrial activity which may have potential pollutant sources</td>
</tr>
</tbody>
</table>
Section 3 Best Management Practices

3.1 MINIMUM BMPs

All minimum BMPs that are required by the General Permit and necessary to meet the facility conditions will be implemented. Guidance for BMP implementation is provided in the CASQA Stormwater BMP Handbook Portal: Industrial and Commercial Fact Sheets and the relevant fact sheets are included in Appendix G. Sections 3.1.1 through 3.1.5 list the requirements for each of these minimum BMPs. Minimum BMPs will be implemented for additional targeted industrial activities, equipment, and materials as necessary. If any of the required minimum BMPs are applicable but cannot be implemented, an explanation and alternative approach will be provided in the following sections.

Table 3.1 provides a list of the five minimum General Permit BMP elements that are included in the relevant BMP fact sheets and indicates which BMPs are implemented at the facility. Employee Training, described in Section 3.1.6, and Quality Assurance and Record Keeping, described in Section 3.1.7, are additional minimum BMPs that will be implemented.

As required by the General Permit, a summary of all implemented BMPs is included in Section 3.3. The schedule for BMP implementation and the requirements for inspection and maintenance are contained in Section 4.
<table>
<thead>
<tr>
<th>CASQA Fact Sheet Number</th>
<th>CASQA BMP Fact Sheet Name</th>
<th>Addresses Minimum General Permit BMP Requirements</th>
<th>BMP to be Implemented?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Good Housekeeping Preventative Maintenance</td>
<td></td>
</tr>
<tr>
<td>SC-10</td>
<td>Non-Stormwater Discharges</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-11</td>
<td>Spill Prevention, Control, and Cleanup</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SC-20</td>
<td>Vehicle and Equipment Fueling</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-21</td>
<td>Vehicle and Equipment Cleaning</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-22</td>
<td>Vehicle and Equipment Maintenance and Repair</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-30</td>
<td>Outdoor Loading and Unloading</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-31</td>
<td>Outdoor Liquid Container Storage</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-32</td>
<td>Outdoor Equipment Operations</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-33</td>
<td>Outdoor Storage of Raw Materials</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-34</td>
<td>Waste Handling and Disposal</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-35</td>
<td>Safer Alternative Products</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SC-40</td>
<td>Contaminated or Erodible Surfaces</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>SC-41</td>
<td>Building and Grounds Maintenance</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-42</td>
<td>Building Repair, Remodeling, and Construction</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-43</td>
<td>Parking Area Maintenance</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SC-44</td>
<td>Drainage System Maintenance</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Additional BMPs Implemented:

Table 3.1 Minimum BMPs
3.1.1 Good Housekeeping

The following good housekeeping measures will be implemented in accordance with the General Permit (Section X.H.1.a):

- Observe all outdoor areas associated with industrial activity including stormwater discharge locations, drainage areas, conveyance systems, waste handling/disposal areas, and perimeter areas impacted by off-facility materials or stormwater run-on to determine housekeeping needs. Any identified debris, waste, spills, tracked materials, or leaked materials will be cleaned and disposed of properly;
- Minimize or prevent material tracking;
- Minimize dust generated from industrial materials or activities;
- Ensure that all facility areas impacted by rinse/wash waters are cleaned as soon as possible;
- Cover all stored industrial materials that can be readily mobilized by contact with stormwater;
- Contain all stored non-solid industrial materials or wastes (e.g., particulates, powders, shredded paper, etc.) that can be transported or dispersed via the wind or contact with stormwater;
- Prevent disposal of any rinse/wash waters or industrial materials into the stormwater conveyance system;
- Minimize stormwater discharges from non-industrial areas (e.g., stormwater flows from employee parking area) that contact industrial areas of the facility; and
- Minimize authorized NSWDs from non-industrial areas (e.g., potable water, fire hydrant testing, etc.) that contact industrial areas of the facility.

BMPs to be implemented are summarized in Table 3.1 and the BMP fact sheets are included in Appendix G.

<table>
<thead>
<tr>
<th>BMP</th>
<th>Status of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good housekeeping is included in the storm water pollution prevention program.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Good Housekeeping practices are implemented inside 1213 Johnson building to prevent pollutants from being tracked outdoors, which include, cleaning exterior of equipment surfaces; implementation of sound material storage practices to minimize spills; maintenance of floors and ground surfaces in a dry and clean condition using brooms, shovels, vacuum cleaners, or cleaning machines; and a routine inspection for leaks or conditions to prevent any potential discharges of chemicals to contact storm water with raw materials, intermediate materials, waste materials, or products.</td>
<td>Currently implemented on-site.</td>
</tr>
</tbody>
</table>
The facility and outside areas are kept in a neat and orderly condition. Currently implemented on-site.

Parking lot and open areas are swept once a week from any dust, trash, and debris. Currently implemented on-site.

Vehicles and equipment are inspected for evidence of drips and leaks. Currently implemented on-site.

Adequate space is maintained in work areas. Currently implemented on-site.

Garbage is removed regularly. Currently implemented on-site.

Walkways and passageways are easily accessible, safe, and free of protruding objects, materials, and equipment. Currently implemented on-site.

The facility has cleanup procedures for spilled solids (i.e. absorbent materials and debris). Currently implemented on-site.

Employees are trained in good housekeeping. Currently implemented on-site.

Good housekeeping procedures and reminders are posted in appropriate locations around the workplace. Currently implemented on-site.

Regular housekeeping inspections are conducted. Currently implemented on-site.

3.1.2 Preventative Maintenance

The following preventative maintenance measures will be implemented in accordance with the General Permit (Section X.H.1.b):

- Identify all equipment and systems used outdoors that may spill or leak pollutants;
- Observe the identified equipment and systems to detect leaks, or identify conditions that may result in the development of leaks;
- Establish an appropriate schedule for maintenance of identified equipment and systems; and
- Establish procedures for prompt maintenance and repair of equipment, and maintenance of systems when conditions exist that may result in the development of spills or leaks.

Specific preventative maintenance BMPs to be implemented at the facility are provided in Table 3.1 and the BMP fact sheets are included in Appendix G.

<table>
<thead>
<tr>
<th>BMP</th>
<th>Status of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Records of preventive maintenance are retained on-site and are maintained by the Maintenance Manager.</td>
<td>Currently implemented on-site.</td>
</tr>
</tbody>
</table>

3.1.3 Spill and Leak Prevention and Response

The following spill and leak prevention and response measures will be implemented in accordance with the General Permit (Section X.H.1.c):

- Establish procedures and/or controls to minimize spills and leaks;
Develop and implement spill and leak response procedures to prevent industrial materials from discharging through the stormwater conveyance system. Spilled or leaked industrial materials will be cleaned promptly and disposed of properly;

- Identify and describe all necessary and appropriate spill and leak response equipment, location(s) of spill and leak response equipment, and spill or leak response equipment maintenance procedures; and

- Identify and train appropriate spill and leak response personnel.

Specific spill and leak prevention and response BMPs to be implemented at the East County Bus Maintenance facility are provided in Table 3.1 and the BMP fact sheets are included in Appendix G.

<table>
<thead>
<tr>
<th>BMP</th>
<th>Status of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective housekeeping practices have been adopted into day-to-day operations conducted on-site.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Secondary containment and spill controls have been installed on the on-site fuel tanks.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Regular visual inspections are performed to identify signs of wear on tanks, drums, containers, and storage shelves and to identify sloppy housekeeping or other issues that could lead to potential spills.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Preventive maintenance is performed on storage tanks, valves, pumps, pipes, and other equipment.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Filling procedures for tanks and other equipment have been implemented to minimize spills.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Methods to recycle, reclaim, and/or reuse process materials to reduce the volume brought into the facility have been implemented.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Bags/containers that are easily punctured are not stored near high traffic areas where they may be hit by moving vehicles.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Non-toxic materials have been substituted for toxic materials.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>The facility has appropriate security for material storage areas.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>The facility is stocked with absorbent pads, pillows, booms, etc. to control spills and prevent discharge off-site.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>A Standard Operating Procedure for Spill and Release Response has been developed.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>A Spill Prevention, Control, and Countermeasure (SPCC) Plan has been developed.</td>
<td>Currently implemented on-site.</td>
</tr>
</tbody>
</table>

3.1.4 Material Handling and Waste Management

The following material handling and waste management measures will be implemented in accordance with the General Permit (Section X.H.1.d):
- Prevent or minimize handling of industrial materials or wastes that can be readily mobilized by contact with stormwater during a storm event;
- Contain all stored non-solid industrial materials or wastes (e.g., particulates, powders, shredded paper, etc.) that can be transported or dispersed by the wind or contact with stormwater during handling;
- Cover industrial waste disposal containers and industrial material storage containers that contain industrial materials when not in use;
- Divert run-on and stormwater generated from within the facility away from all stockpiled materials;
- Clean all spills of industrial materials or wastes that occur during handling in accordance with the spill response procedures (Section X.H.1.c); and
- Observe and clean as appropriate, any outdoor material or waste handling equipment or containers that can be contaminated by contact with industrial materials or wastes.

Specific material handling and waste management BMPs to be implemented at the East County Bus Maintenance facility are provided in Table 3.1 and the BMP fact sheets are included in Appendix G.

<table>
<thead>
<tr>
<th>BMP</th>
<th>Status of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine inspections and maintenance are performed on all material storage vessels (i.e., tanks, drums, cylinders, etc.).</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>All material storage vessels are labeled as to contents and associated hazards, if any.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Dry absorbent is used to clean areas around material storage vessels.</td>
<td>Currently implemented on-site.</td>
</tr>
</tbody>
</table>

Spill controls are in place for the entire East County site that includes: maintaining adequate supplies of spill response equipment and materials in accessible locations, on appropriate vehicles (i.e., maintenance vehicles; spill containment and response which includes using drip pans to contain leaks and absorbent brooms, mats, or other devices to contain liquid materials (wash water, automotive fluids). Immediate action must be taken to clean up spills and leaks; disposal of collected fluids that includes to properly dispose of any collected fluids (e.g. spill fluids, oil/water separators, etc.) according to applicable regulations. Always dispose of materials in an approved manner, and use an approved treatment facility through permitted connection, such as sanitary sewer line which is connected to the oil/water separator; and to report spills in accordance with Federal, State, and local regulations.

There are three trash dumpsters, and one recycle dumpster in the southeast end of 1213 Johnson lot. All dumpsters have secured lids. The trash dumpsters are emptied three times weekly, and recycle dumpsters are emptied weekly.

1213 Johnson site has a bus wash located east of the building that is covered, and a chassis wash located east next to the bus wash that is also covered. The wash water feeds into an oil/water separator just south of the bus and chassis wash, which is connected to El Cajon’s sanitary sewer system. The oil/water separator is serviced quarterly.
3.1.5 Erosion and Sediment Controls

The following erosion and sediment control measures will be implemented in accordance with the General Permit (Section X.H.1.e):

- Implement effective wind erosion controls;
- Provide effective stabilization for all disturbed soils and other erodible areas prior to a forecasted storm event;
- Maintain effective perimeter controls and stabilize all site entrances and exits to sufficiently control discharges of erodible materials from discharging or being tracked off the site;
- Divert run-on and stormwater generated from within the facility away from all erodible materials; and
- If sediment basins are implemented, ensure compliance with the design storm standards in Section X.H.6. of the General Permit.

Specific erosion and sediment control BMPs to be implemented at the East County Bus Maintenance facility are provided in Table 3.1 and the BMP fact sheets are included in Appendix G.

<table>
<thead>
<tr>
<th>BMP</th>
<th>Status of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular visual inspections are performed at the facility to identify signs of erosion, sediment loss, sinkholes, etc.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Vegetative covering has been used at barren areas on the property.</td>
<td>Currently implemented on-site.</td>
</tr>
<tr>
<td>Slope and grade control has been used to alter steep areas subject to erosion.</td>
<td>Currently implemented on-site.</td>
</tr>
</tbody>
</table>

3.1.6 Employee Training Program

An employee training program will be implemented in accordance with the following requirements in the General Permit (Section X.H.1.f):

- Ensure that all team members implementing the various compliance activities of this SWPPP are properly trained in topics including but not limited to: BMP implementation, BMP effectiveness evaluations, visual observations, and monitoring activities;
- Prepare or acquire appropriate training manuals or training materials;
- Identify which personnel need to be trained, their responsibilities, and the type of training they will receive;
- Provide a training schedule; and
- Maintain documentation of all completed training classes and the personnel that received training in the SWPPP.
The Pollution Prevention Team will be trained in implementing the various compliance activities specified in this SWPPP, and documentation of training activities is retained in SWPPP Appendix C. To promote stormwater management awareness specific for this facility, refresher training will be provided on an annual basis.

Task specific training for all employees engaged in activities that have the potential to cause stormwater pollution will be conducted when new employees are hired and refresher training will be provided on an annual basis.

This facility has Baseline Training will be performed by a QISP. The QISP will be responsible for providing information during training sessions and subsequently completing the training logs shown in Appendix C, which identifies the site-specific stormwater topics covered as well as the names of site personnel who attended the meeting. Each team member will be trained in the specific role they are responsible to undertake.

<table>
<thead>
<tr>
<th>BMP</th>
<th>Status of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Pollution Prevention Team members are trained annually with regards to storm water pollution prevention.</td>
<td>Currently implemented on-site.</td>
</tr>
</tbody>
</table>

An employee training program is in place to inform personnel of the requirements of the SWPPP. Training addresses spill response, good housekeeping, and material management practices. The training program includes the following elements:

- Instruction on spill response, good housekeeping, material management practices, and SWPPP requirements is given to all new employees by trained personnel. This instruction is for all new employees that being during the first week of work.
- Designated employees, such as shift supervisors, are given an annual training class with specific emphasis on SWPPP requirements. Safety training also supports actions that will minimize the risk of storm water contaminations.

Current training procedures will be enhanced to include awareness about storm water pollution and the relationship between facility activities and potential pollutants. Training will occur once per year and a training log recording topics, training dates, and attendees will be kept in this SWPPP. New employees will be provided with this information during their normal orientation training.

3.1.7 Quality Assurance and Record Keeping

The following quality assurance and record keeping activities will be performed in accordance with the requirements in the General Permit (Section X.H.1.g):

- Develop and implement management procedures to ensure that appropriate staff implements all elements of the SWPPP, including the Monitoring Implementation Plan (SWPPP Section 5);
- Develop a method of tracking and recording the implementation of BMPs identified in the SWPPP; and
- Maintain the BMP implementation records, training records, and records related to any spills and clean-up related response activities for a minimum of five (5) years as required in the General Permit (Section XXI.J.4).

BMPs will be implemented according to the schedule and procedures presented in SWPPP Section 4. BMPs will be implemented by properly trained team members as documented in Appendix C.

Visual observations will be performed as described in SWPPP Section 5.5. Potential pollutant sources and BMPs will be inspected during visual observations, and new BMPs will be implemented as needed. Records of visual observations of BMP implementation will be retained in Appendix H.

Paper or electronic records of documents required by this SWPPP will be retained for a minimum of five (5) years from the date generated or date submitted, whichever is later, for the following items:

- Employee Training Records;
- BMP Implementation Records;
- Spill and Clean-up Related Records;
- Records of Monitoring Information
 - The date, exact location, and time of sampling or measurement;
 - The date(s) analyses were performed;
 - The individual(s) that performed the analyses;
 - The analytical techniques or methods used; and
 - The results of such analyses;
- Level 1 ERA Reports;
- Level 2 ERA Action Plan;
- Level 2 ERA Technical Report; and
- Annual Reports.

3.2 ADVANCED BMPs

3.2.1 Exposure Minimization BMPs

Storm resistant shelters are installed onsite to prevent the contact of stormwater with industrial activities and material. The locations of these shelters and associated industrial activities and materials are presented in Table 3.2.
Fueling services are performed at the fueling island which is not covered.

3.2.2 Stormwater Containment and Discharge Reduction BMPs

Stormwater containment and discharge reduction BMPs include BMPs that divert, reuse, contain, or reduce the volume of stormwater runoff. Specific stormwater containment and discharge reduction BMPs to be implemented at the East County Bus Maintenance facility are provided in Table 3.3 and the BMP fact sheets are included in Appendix G. The project does not currently have stormwater containment and discharge reduction BMPs in place. However, the project is currently being redeveloped to include bioretention, high-rate biofilters, high-rate media filters, and underground detention.

<table>
<thead>
<tr>
<th>Shelter Location/Description</th>
<th>Associated Industrial Activity/Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Shop (1213 Johnson)</td>
<td>Vehicle and Equipment Maintenance</td>
</tr>
</tbody>
</table>
Table 3.3 | Stormwater Containment and Discharge Reduction BMPs

<table>
<thead>
<tr>
<th>CASQA Fact Sheet Number</th>
<th>CASQA BMP Factsheet Name</th>
<th>Meets Advanced BMP Requirement</th>
<th>BMP Used</th>
<th>BMP Location, Runoff Sources, and Potential Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-10</td>
<td>Infiltration Trench</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-11</td>
<td>Infiltration Basin</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-12</td>
<td>Harvest and Reuse</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-20</td>
<td>Wet Pond</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-21</td>
<td>Constructed Wetland</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-22</td>
<td>Extended Detention Basin</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-30</td>
<td>Vegetated Swale</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-31</td>
<td>Vegetated Buffer Strip</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-32</td>
<td>Bioretention</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-40</td>
<td>Media Filter</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-50</td>
<td>Water Quality Inlet</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>TC-60</td>
<td>Multiple Systems</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MP-20</td>
<td>Biotreatment</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MP-40</td>
<td>Stormwater Filter</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MP-50</td>
<td>Wet Vault</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MP-51</td>
<td>Gravity Separator</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MP-52</td>
<td>Drain Inlet Insert</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Alternate BMPs Used: If used, state reason:
3.2.3 Treatment Control BMPs

Treatment control BMPs include one or more mechanical, chemical, biologic, physical, or any other treatment process technology and is sized to meet the treatment control design storm standard. Specific treatment control BMPs to be implemented at the East County Bus Maintenance Facility are provided in Table 3.4 and the BMP fact sheets are included in Appendix G. The site is currently under construction for the site improvements which will include additional treatment BMPs such as bioretention, high-rate biofilters, high-rate media filters, and underground detention.

3.2.4 Other Advanced BMPs

NONE
<table>
<thead>
<tr>
<th>CASQA Fact Sheet Number</th>
<th>CASQA BMP Factsheet Name</th>
<th>Addresses O&M for Advanced BMPs</th>
<th>BMP Used</th>
<th>BMP Location, Runoff Sources, and Potential Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-10</td>
<td>Infiltration Trench</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-11</td>
<td>Infiltration Basin</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-12</td>
<td>Harvest and Reuse</td>
<td></td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-20</td>
<td>Wet Pond</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-21</td>
<td>Constructed Wetland</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-22</td>
<td>Extended Detention Basin</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-30</td>
<td>Vegetated Swale</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-31</td>
<td>Vegetated Buffer Strip</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-32</td>
<td>Bioretention</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-40</td>
<td>Media Filter</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>TC-50</td>
<td>Water Quality Inlet</td>
<td>✑</td>
<td>✑</td>
<td>Northwest corner of the site in Watershed A. Potential pollutants in this watershed are oil and grease from vehicle parking and fueling areas.</td>
</tr>
<tr>
<td>TC-60</td>
<td>Multiple Systems</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>MP-20</td>
<td>Biotreatment</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>MP-40</td>
<td>Stormwater Filter</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>MP-50</td>
<td>Wet Vault</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>MP-51</td>
<td>Gravity Separator</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
<tr>
<td>MP-52</td>
<td>Drain Inlet Insert</td>
<td>✑</td>
<td>✑</td>
<td></td>
</tr>
</tbody>
</table>

Alternate BMPs Used: If used, state reason:
3.3 BMP SUMMARY TABLE

Table 3.5 summarizes the industrial activities, materials, pollutant sources, potential pollutants, and BMPs being implemented to prevent discharge of pollutants in stormwater runoff. Descriptions of the specific BMPs being implemented were provided in previous subsections. Implementation and maintenance of BMPs is described in Section 4.
<table>
<thead>
<tr>
<th>Industrial Activity/Material</th>
<th>Potential Pollutants</th>
<th>BMPs Implemented</th>
<th>CASQA BMP Fact Sheet Number</th>
<th>Required Equipment and Tools</th>
</tr>
</thead>
</table>
| Vehicle and Equipment Washing | Oils and greases, phosphates, and suspended solids | Vehicle washing is conducted in an indoor wash bay where all generated wash water is captured by drains and discharged to an oil/water separator. The oil/water separator is connected to the municipal sanitary sewer system. Equipment washing is conducted inside the maintenance shop in a parts washer. No spent solvent is generated from the parts washer. Since vehicle washing is conducted indoors and equipment washing is conducted inside the maintenance building, there is no potential for impact to storm water runoff. | - SC-11: Spill Prevention, Control, and Cleanup
- SC-21: Vehicle and Equipment Cleaning
-SC-22: Vehicle and Equipment Maintenance and Repair
- SC-30: Outdoor Loading and Unloading
-SC-35: Safer Alternative Products | Vehicle and equipment washing is covered, no stormwater exposure. |
| Waste Storage | Solvents, waste petroleum, and automotive fluids. | Wastes are properly disposed and transported off-site by an appropriate vendor. Solid waste dumpsters are covered with lids to prevent impact to storm water runoff. | -SC-32: Outdoor Equipment Operations
-SC-33: Outdoor Storage of Raw Materials
-SC-34: Waste Handling and Disposal | All dumpsters have secured lids, no stormwater exposure. |
<table>
<thead>
<tr>
<th>Industrial Activity/Material</th>
<th>Potential Pollutants</th>
<th>BMPs Implemented</th>
<th>CASQA BMP Fact Sheet Number</th>
<th>Required Equipment and Tools</th>
</tr>
</thead>
</table>
| Processing | Oil | Air compressor blowdown is captured inside and is therefore, prevented from impacting storm water runoff. | -SC-10: Non-Stormwater Discharges
-SC-20: Vehicle and Equipment Fueling
-SC-31: Outdoor Liquid Container Storage | Processing located in storm resistant shelter, no stormwater exposure. |
| Loading/Unloading | Automotive fluids | All bulk loading/unloading is conducted by vendors. Vendors are equipped with spill prevention measures to prevent releases from occurring during material transfer operations. In the event of a release, the facility will refer to Spill and Release Response to prevent impact to the property. | -SC-10: Non-Stormwater Discharges
-SC-20: Vehicle and Equipment Fueling
-SC-31: Outdoor Liquid Container Storage | All automotive fluids are delivered in sealed containers and delivered directly into the building through a service bay |
Section 4 BMP Implementation

4.1 BMP IMPLEMENTATION SCHEDULE

The schedule for implementing all minimum and advanced BMPs is presented in Table 4.1. BMPs will be implemented as necessary to reduce or prevent transport of industrial pollutants in stormwater runoff. Slight modifications to this schedule may be necessary to achieve this goal. Records of BMP implementation will be included in Appendix H.

Table 4.1 BMP Implementation Schedule

<table>
<thead>
<tr>
<th>Industrial Activity/Material and Location</th>
<th>BMP Description</th>
<th>Person Responsible for Implementing BMP</th>
<th>Date and Time of Implementation</th>
<th>Implementation Duration</th>
</tr>
</thead>
</table>
| Vehicle and Equipment Maintenance/1213 Johnson | - SC-11: Spill Prevention, Control, and Cleanup
- SC-21: Vehicle and Equipment Cleaning
- SC-22: Vehicle and Equipment Maintenance and Repair
- SC-30: Outdoor Loading and Unloading
- SC-35: Safer Alternative Products | SWPPP Team | Monthly Observation |
| Vehicle Fueling | - SC-10: Non-Stormwater Discharges
- SC-20: Vehicle and Equipment Fueling
- SC-31: Outdoor Liquid Container Storage | SWPPP Team | Monthly Observation |
| Bus and vehicle Parking | - SC-43: Parking Area Maintenance
- SC-41: Building and Grounds Maintenance
- SC-44: Drainage System Maintenance | SWPPP Team | Monthly Observation |
| Material Storage Areas | - SC-32: Outdoor Equipment Operations
- SC-33: Outdoor Storage of Raw Materials
- SC-34: Waste Handling and Disposal | SWPPP Team | Monthly Observation |
Table 4.1 BMP Implementation Schedule

<table>
<thead>
<tr>
<th>Industrial Activity/Material and Location</th>
<th>BMP Description</th>
<th>Person Responsible for Implementing BMP</th>
<th>Date and Time of Implementation</th>
<th>Implementation Duration</th>
</tr>
</thead>
</table>
| Site Construction | -SC-40: Contaminated or Erodible Surfaces
-SC-42: Building Repair, Remodeling, and Construction | SWPPP Team | Monthly | Observation |

4.2 BMP INSPECTION AND MAINTENANCE

The General Permit requires, at a minimum, monthly observations of BMPs, along with inspections during sampling events. Monthly observations will be conducted during daylight hours of scheduled facility operating hours and on days without precipitation. A BMP observation checklist must be filled out for and maintained on-site with the SWPPP. The observation checklist includes the necessary information as discussed in Section 5.5. A blank observation checklist can be found in Appendix I, and completed checklists will be kept in Appendix H or in an accompanying file/binder that is referenced in the SWPPP and readily accessible on site.

BMPs will be maintained regularly to ensure proper and effective functionality. If necessary, corrective actions will be implemented within 72 hours of identified deficiencies and associated amendments to the SWPPP will be prepared and documented.

Specific guidance for maintenance, observation, and repair of advanced BMPs can be found in the BMP Factsheets in Appendix G.
Section 5 Monitoring Implementation Plan

5.1 Purpose
This Monitoring Implementation Plan was developed to address the following objectives:

1. Identify the monitoring team;
2. Describe weather and rain event tracking procedures;
3. Describe discharge locations, visual observations procedures;
4. Describe visual observation response procedures;
5. Describe sample collection and handling procedures;
6. Describe field instrumentation calibration instructions and intervals;
7. Provide justification for alternative discharge locations, Representative Sample Reduction (RSR), and Qualified Combined Samples (QCS), as applicable; and
8. Provide an example Chain of Custody form to be used when handling and shipping water quality samples to the laboratory.

5.2 Weather and Rain Event Tracking
Stormwater sampling and visual observations will be conducted during Qualified Storm Events (QSEs). A QSE is defined as any precipitation event that produces a discharge for at least one drainage area and is preceded by 48 hours with no discharge from any drainage area. Weather and precipitation forecasts will be tracked to identify potential QSEs.

When targeting a QSE for stormwater sampling, the appropriate team member will weekly consult the National Oceanographic and Atmospheric Administration (NOAA) for weather forecasts. These forecasts can be obtained at http://www.srh.noaa.gov/. If weekly forecasts indicate potential for significant precipitation, the weather forecast will be closely monitored during the 48 hours preceding the event. Weather reports with precipitation data should be printed and maintained with the SWPPP in MIP Attachment 1 “Weather Reports” to document precipitation totals and antecedent conditions.

5.3 Monitoring Locations
Monitoring locations are shown on the Site Maps in Appendix A. Monitoring locations are described in Section 5.6.

Whenever changes in facility operations might affect the appropriateness of sampling locations, the sampling locations will be revised accordingly. All such revisions will be implemented as soon as feasible and the SWPPP amended.

5.4 Sample Collection and Visual Observation Exceptions
Safety practices for sample collection will be in accordance with the QISP’s health and safety plan.

The collection of samples or conduct visual observations is not required under the following conditions:
During dangerous weather conditions such as flooding and electrical storms.
Outside of scheduled site business hours.

Scheduled site business hours are presented in Section 2.2.

If monitoring (visual observations or sample collection) of the site is unsafe because of the dangerous conditions noted above then the appropriate team member will document the conditions for why an exception to performing the monitoring was necessary. The exception documentation will be filed in MIP Attachment 2 “Monitoring Records”.

5.5 Visual Observation Procedures

Visual monitoring includes observations of drainage areas, BMPs, and discharge locations.

- Observations of BMPs are required to identify and record BMPs that need maintenance to operate effectively, that have failed, or that could fail to operate as intended.
- Observations of the drainage areas are required to identify any spills, leaks, uncontrolled pollutant sources, and non-stormwater discharges.
- Observations of discharge locations are required to identify the presence of visible pollutants in stormwater discharged from the facility.

Visual observations will be performed at least once every calendar month during dry conditions. Visual observations will also be performed during stormwater sampling events when discharge is occurring.

5.5.1 Monthly Visual Observations

Monthly visual observations are necessary to document the presence of and to identify the source of any pollutants and non-stormwater flows. These should consist of observations of the outdoor facility operations, BMPs, and NSWD observations.

In the event that monthly visual observations are not performed, an explanation must be provided in the annual report.

5.5.1.1 Outdoor Facility Operations Observations

Observe potential sources of industrial pollutants including industrial equipment and storage areas, and outdoor industrial activities. Record observations of:

- Spills or leaks; and
- Uncontrolled pollutant sources

5.5.1.2 BMP Observations

Observe BMPs to identify and record:

- BMPs that are properly implemented;
- BMPs that need maintenance to operate effectively;
- BMPs that have failed; or
- BMPs that could fail to operate as intended.
5.5.1.3 Non-Stormwater Discharge Observations

Observe each drainage area for the presence of or indications of prior unauthorized and authorized non-stormwater discharges. Record:

- Presence or evidence of any non-stormwater discharge (authorized or unauthorized);
- Pollutant characteristics (floating and suspended material, sheen, discoloration, turbidity, odor, etc.); and
- Source of discharge.

For authorized non-stormwater discharges, also document whether BMPs are in place and are functioning to prevent contact with materials or equipment that could introduce pollutants.

5.5.2 Sampling Event Visual Observations

Sampling event visual observations evaluate the general appearance of the stormwater as an indicator of potential pollutants. These observations will be conducted at the same time sampling occurs at the discharge locations identified in Section 5.6.2. At each discharge location where a sample is obtained, record observations of:

- Floating and suspended materials;
- Oil and grease;
- Discoloration;
- Turbidity;
- Odors; and
- Trash.

When pollutants are observed in the discharged stormwater, follow-up observations of the drainage area will be conducted to identify the probable source of the pollutants.

In the event that a discharge location is not visually observed during the sampling event, the location of the discharge and reasoning for not obtaining observations must be recorded.

5.5.3 Visual Monitoring Procedures

Visual monitoring will be conducted by trained team members. The names and contact numbers of the site visual monitoring personnel are listed below and their training qualifications are provided in Appendix C.

Assigned inspector: John McKee Contact phone: 619-279-6945
Alternate inspector: Paul Blais Contact phone: 619-279-6945
 Javier Luna
 Shadi Nashashibi
 Brian Leonard
 Edward Webster
 Arron Ashcroft
Visual observations will be documented on the *Visual Observation Log* (see MIP Attachment 3 “Example Forms”). Visual observations will be supplemented with a site specific BMP inspection checklist. Photographs used to document observations will be referenced on the *Visual Observation Log* and maintained with the Monitoring Records in Attachment 2.

The completed logs and checklists will be kept in MIP Attachment 2 “Monitoring Records”.

5.5.4 Visual Monitoring Follow-Up and Reporting

Correction of deficiencies identified by the observations, including required repairs or maintenance of BMPs, will be initiated and completed as soon as possible. Response actions will include the following:

- Report observations to the Pollution Prevention Team Leader or designated individual;
- Identify and implement appropriate response actions;
- Determine if SWPPP update is needed;
- Verify completion of response actions; and
- Document response actions.

If identified deficiencies require design changes, including additional BMPs, the implementation of changes will completed as soon as possible, and the SWPPP will be amended to reflect the changes.

BMP deficiencies identified in site observation reports and correction of deficiencies will be tracked on the *BMP Observation Checklist* and will be retained in Appendix I.

Results of visual monitoring must be summarized and reported in the Annual Report.

5.5.5 Visual Monitoring Locations

The observations identified in Sections 5.5.1 and 5.5.2 will be conducted at the locations identified in this section.

Visual monitoring locations are shown on the Site Maps in SWPPP Appendix A.

There are two drainage areas onsite. Drainage areas are shown on the Site Maps in Appendix A and are identified in Table 5.1.

<table>
<thead>
<tr>
<th>Location Identifier</th>
<th>Draining Area Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed A</td>
<td>Northwest corner of site at curb outlet</td>
</tr>
<tr>
<td>Watershed B</td>
<td>Southwest corner of site at 18” RCP</td>
</tr>
</tbody>
</table>
There are two discharge locations onsite. Site stormwater discharge locations are shown on the Site Maps in Appendix A and Table 5.2 identifies each stormwater discharge location.

<table>
<thead>
<tr>
<th>Location Identifier</th>
<th>Discharge Location</th>
<th>(Note Drainage Area that the discharge location drains)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watershed A</td>
<td>Northwest corner of site at curb outlet</td>
<td></td>
</tr>
<tr>
<td>Watershed B</td>
<td>Southwest corner of site at 18” RCP</td>
<td></td>
</tr>
</tbody>
</table>

There are no stormwater storage or containment areas onsite

<table>
<thead>
<tr>
<th>Location Identifier</th>
<th>Description of Containment</th>
<th>(Note Drainage Area in which the containment is located)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

5.6 **Sampling and Analysis Procedures**

This section describes the methods and procedures that will be followed for stormwater sampling and analysis. It contains information for sampling schedule, sampling locations, monitoring preparation, analytical constituents, sample collection, sample analysis, and data evaluation and reporting.

5.6.1 **Sampling Schedule**

Stormwater samples at each discharge location will be collected and analyzed from two (2) QSEs within the first half of each reporting year (July 1 to December 31), and two (2) QSEs within the second half of each reporting year (January 1 to June 30).

A QSE is a precipitation event that:

- Produces a discharge for at least one drainage area; and
- Is preceded by 48 hours with no discharge from any drainage area.

5.6.2 **Sampling Locations**

Sampling locations include all locations where stormwater is discharged from the site. Discharge locations are shown on the Site Maps in Appendix A and are included in Table 5.4. A total of two discharge locations have been identified on the project site for the collection of stormwater runoff samples.
<table>
<thead>
<tr>
<th>Sample Location Number</th>
<th>Sample Location Description</th>
<th>Sample Location Latitude and Longitude (Decimal Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Northwest corner of site at curb outlet</td>
<td>32.813221 -116.970894</td>
</tr>
<tr>
<td>2</td>
<td>Southwest corner of site at 18" RCP</td>
<td>32.812392 -116.970781</td>
</tr>
</tbody>
</table>

5.6.3 Monitoring Preparation

Samples on the project site will be collected by the following sampling personnel:

Name/Telephone Number: John McKee/619-279-6945
Alternate(s)/Telephone Number:
- Paul Blais/619-442-8414 ext. 213
- Javier Luna/619-442-8414 ext. 213
- Shadi Nashashibi/619-442-8414 ext. 213
- Brian Leonard/619-442-8414 ext. 213
- Edward Webster/619-442-8414 ext. 213
- Arron Ashcroft/619-442-8414 ext. 213
- Lucio Ugarte/619-442-8414 ext. 213
- Roger Eile/619-442-8414 ext. 213

An adequate stock of monitoring supplies and equipment for sampling will be available onsite prior to a sampling event. Monitoring supplies and equipment will be stored in a cool temperature environment that will not come into contact with rain or direct sunlight. Sampling personnel will be available to collect samples in accordance with the sampling schedule. Supplies maintained at the facility will include, but are not limited to: clean powder-free nitrile gloves; sample collection equipment; coolers; appropriate number and volume of sample containers; identification labels; re-sealable storage bags; paper towels; personal rain gear; ice; and *Sampling Field Log Sheets* and Chain of Custody (CoC) forms, which are provided in MIP Attachment 3 “Example Forms”.

5.6.4 Analytical Constituents

Table 5.5 identifies the constituents identified for sampling and analysis.
Table 5.5 Analytical Constituents

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Basic required constituent</td>
</tr>
<tr>
<td>Oil and grease</td>
<td>Basic required constituent</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>Basic required constituent</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>Pollutant Source Assessment constituent</td>
</tr>
<tr>
<td>Iron, Total</td>
<td>SIC Code constituent</td>
</tr>
<tr>
<td>Aluminum, Total</td>
<td>SIC Code constituent</td>
</tr>
<tr>
<td>Lead, Total</td>
<td>SIC Code constituent</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>TMDL/303(d) list constituent</td>
</tr>
<tr>
<td>Metals Screen- Manganese</td>
<td>TMDL/303(d) list constituent</td>
</tr>
<tr>
<td>Metals Screen- Selenium</td>
<td>TMDL/303(d) list constituent</td>
</tr>
<tr>
<td>Nitrate, Nitrite, and total Nitrogen</td>
<td>TMDL/303(d) list constituent</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>TMDL/303(d) list constituent</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>TMDL/303(d) list constituent</td>
</tr>
</tbody>
</table>

5.6.5 Sample Collection

Samples of discharge will be collected at the designated sampling locations shown on the Site Maps in Appendix A. Samples from each discharge location will be collected within four (4) hours of:

- The start of the discharge; or
- The start of facility operations if the QSE occurs within the previous 12 hour period.

Sample collection is required during scheduled facility operating hours and when sampling conditions are safe.

Grab samples will be collected and preserved in accordance with the methods identified in Table 5.6, “Sample Collection, Preservation and Analysis for Water Quality Samples” provided in Section 5.6.6. Only team members properly trained in water quality sampling will collect samples.

The facility is not subject to Subchapter N ELGs mandating pH analysis and has not entered Level 1 Status for pH. If the project enters into Level 1 status, grab samples will be collected and analyzed for pH using a calibrated portable pH instrument. Dischargers not subject to these requirements can use wide range litmus paper or other equivalent pH test kits. If portable pH meters are used, provide instrument calibration requirements and manufacturer information in MIP Attachment 4 “Field Meter Instructions”. The pH analysis will be performed as soon as practicable, but no later than 15 minutes after sample collection.
Samples collected for field analysis, collection, analysis and equipment calibration shall be in accordance with the field instrument manufacturer’s specifications.

Immediately following collection, samples for field analysis shall be tested in accordance with the field instrument manufacturer’s instructions and results recorded on the Effluent Sampling Field Log Sheet.

The field instruments for pH samples are to be determined by the QISP. Field sampling staff shall review the instructions prior to each sampling event and follow the instructions in completing measurement of the samples.

- The instrument(s) shall be maintained in accordance with manufacturer’s instructions.
- The instrument(s) shall be calibrated before each sampling and analysis event.
- Maintenance and calibration records shall be maintained with the SWPPP.

The QISP may authorize alternate equipment provided that the equipment meets the General Permit’s requirements.

Samples from different discharge locations will not be combined or composited prior to shipment to the analytical laboratory unless proper justification for Qualified Combined Samples was provided in accordance with General Permit Section XI.C.5.

Sample collection and handling requirements are described in Section 5.8.

5.6.6 Sample Analysis

Samples will be analyzed using the analytical methods identified in the Table 5.6.

Samples will be analyzed by:

- Laboratory Name: EnviroMatrix Analytical Inc.
- Street Address: 4340 Viewridge Avenue, Suite A
- City, State Zip: San Diego, Ca 92123
- Telephone Number: 858-560-7717
- Point of Contact: Dan Verdon
- ELAP Certification Number: 2564

Samples will be delivered to the laboratory by:

- Facility Personnel: ☑ Yes ☐ No
- Picked up by Laboratory Courier: ☐ Yes ☑ No
- Shipped: ☐ Yes ☑ No
<table>
<thead>
<tr>
<th>Constituent</th>
<th>Analytical Method</th>
<th>Minimum Sample Volume</th>
<th>Sample Containers</th>
<th>Sample Preservation</th>
<th>Reporting Limit</th>
<th>Maximum Holding Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Field test with calibrated portable instrument</td>
<td>1x100mL</td>
<td>Polypropylene</td>
<td>None</td>
<td>Unit less</td>
<td>15 minutes</td>
</tr>
<tr>
<td>metals (Al, Ca, Cu, Ni, Pb, Sn, Va, Zn)</td>
<td>EPA 6010B/7470A</td>
<td>1x250 mL</td>
<td>Polypropylene</td>
<td>Store at 4°C, HNO₃ to pH<2</td>
<td>0.1 mg/L</td>
<td>6 months</td>
</tr>
<tr>
<td>VOCs</td>
<td>EPA 8260B</td>
<td>3x40mL</td>
<td>VOA-Glass</td>
<td>Store at 4°C, HCL to pH<2</td>
<td>1µ/L</td>
<td>14 days</td>
</tr>
<tr>
<td>sVOCs</td>
<td>EPA 8270C</td>
<td>1x1 L</td>
<td>Glass Amber</td>
<td>Store at 4°C</td>
<td>10µg/L</td>
<td>7 days</td>
</tr>
<tr>
<td>Total petroleum hydrocarbons</td>
<td>EPA 8015</td>
<td>1x1 L</td>
<td>Glass Amber</td>
<td>Store at 4°C ±2°C</td>
<td>0.5 mg/L</td>
<td>7 days</td>
</tr>
<tr>
<td>TOC</td>
<td>EPA 9060, SMEWW 5310 B</td>
<td>1x250mL</td>
<td>Glass Amber</td>
<td>Store at 4°C, H₂SO₄ to pH<2</td>
<td>200 mg/kg</td>
<td>28 days</td>
</tr>
<tr>
<td>Methylene Blue Active Substances (MBAS)</td>
<td>EPA 8260</td>
<td>1x1 L</td>
<td>Glass Amber</td>
<td>Store at 4°C ±2°C</td>
<td>7 days</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.6 Sample Collection, Preservation and Analysis for Water Quality Samples

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Analytical Method</th>
<th>Minimum Sample Volume</th>
<th>Sample Containers</th>
<th>Sample Preservation</th>
<th>Reporting Limit</th>
<th>Maximum Holding Time</th>
</tr>
</thead>
</table>

Notes:
5.6.7 **Data Evaluation and Reporting**

The designated member of the Pollution Prevention Team will complete an evaluation of the water quality sample analytical results.

All sampling and analytical results for all individual or Qualified Combined Samples (QCS) samples will be submitted via SMARTS within 30 days of obtaining all results for each sampling event.

The method detection limit will be provided when an analytical result from samples taken is reported by the laboratory as a “non-detect” or less than the method detection limit. A value of zero will not be reported.

Analytical results that are reported by the laboratory as below the minimum level (often referred to as the reporting limit) but above the method detection limit will be provided.

Reported analytical results will be averaged automatically by SMARTS at the end of the reporting year. For any calculations required by the General Permit a value of zero shall be used, all effluent sampling analytical results that are reported by the laboratory as “non-detect” or less than the Method Detection Limit (MDL).

5.7 **Training of Sampling Personnel**

Sampling personnel will be trained to collect, maintain, and ship samples in accordance with the General Permit and this SWPPP. Training records of designated sampling personnel are provided in Appendix C.

5.8 **Sample Collection and Handling**

5.8.1 **Sample Collection**

Samples will be collected at the designated sampling locations shown on the Site Map(s) and listed in the preceding sections. Samples will be collected, maintained and shipped in accordance with the requirements in the following sections.

Grab samples will be collected and preserved in accordance with the methods identified in preceding sections.

To maintain sample integrity and prevent cross-contamination, sample collection personnel will follow the protocols below.

- Collect samples (for laboratory analysis) only in analytical laboratory-provided sample containers;
- Wear clean, powder-free nitrile gloves when collecting samples;
- Change gloves whenever something not known to be clean has been touched;
- Change gloves between sites;
- Decontaminate all equipment (e.g. bucket, tubing) prior to sample collection using a trisodium phosphate water wash, distilled water rinse, and final rinse with distilled water.
(Dispose of wash and rinse water appropriately, i.e., do not discharge to storm drain or receiving water). Do not decontaminate laboratory provided sample containers;

- Do not smoke during sampling events;
- Never sample near a running vehicle;
- Do not park vehicles in the immediate sample collection area (even non-running vehicles);
- Do not eat or drink during sample collection; and
- Do not breathe, sneeze, or cough in the direction of an open sample container.

The most important aspect of grab sampling is to collect a sample that represents the entire runoff stream. Typically, samples are collected by dipping the collection container in the runoff flow paths and streams as noted below.

- For small streams and flow paths, simply dip the bottle facing upstream until full.
- For larger stream that can be safely accessed, collect a sample in the middle of the flow stream by directly dipping the mouth of the bottle. Once again making sure that the opening of the bottle is facing upstream as to avoid any contamination by the sampler.
- For larger streams that cannot be safely waded, pole-samplers may be needed to safely access the representative flow.
- Avoid collecting samples from ponded, sluggish or stagnant water.
- Avoid collecting samples directly downstream from a bridge as the samples can be affected by the bridge structure or runoff from the road surface.
- Do not stand upstream of the sampling point within the flow path.

Note, that depending upon the specific analytical test, some containers may contain preservatives. These containers should **never** be dipped into the stream, but filled indirectly from the collection container.

5.8.2 Sample Handling

Field pH measurements must be conducted immediately. Do not store pH samples for later measurement.

Samples for laboratory analysis must be handled as follows. Immediately following sample collection:

- Cap sample containers;
- Complete sample container labels;
- Sealed containers in a re-sealable storage bag;
- Place sample containers into an ice-chilled cooler;
- Document sample information on the *Sampling Field Log Sheet*; and
- Complete the CoC.

All samples for laboratory analysis must be maintained between 0-6 degrees Celsius during delivery to the laboratory. Samples must be kept on ice, or refrigerated, from sample collection through delivery to the laboratory. Place samples to be shipped inside coolers with ice. Make
sure the sample bottles are well packaged to prevent breakage and secure cooler lids with packaging tape.

Ship samples that will be laboratory analyzed to the analytical laboratory right away. Hold times are measured from the time the sample is collected to the time the sample is analyzed. The General Permit requires that samples be received by the analytical laboratory within 48 hours of the physical sampling (unless required sooner by the analytical laboratory).

5.8.3 Sample Documentation Procedures

All original data documented on sample bottle identification labels, *Sampling Log*, and CoCs will be recorded using waterproof ink. If an error is made on a document, sampling personnel will make corrections by lining through the error and entering the correct information. The erroneous information will not be obliterated. All corrections will be initialed and dated.

Duplicate samples will be identified consistent with the numbering system for other samples to prevent the laboratory from identifying duplicate samples. Duplicate samples will be identified in the Sampling Log.

Sample documentation procedures include the following:

- **Sample Bottle Identification Labels**: Sampling personnel will attach an identification label to each sample bottle. Sample identification will uniquely identify each sample location.

- **Field Log Sheets**: Sampling personnel will complete the *Effluent Sampling Field Log Sheet* and *Receiving Water Sampling Field Log Sheet* for each sampling event, as appropriate.

- **Chain of Custody**: Sampling personnel will complete the CoC for each sampling event for which samples are collected for laboratory analysis. The sampler will sign the CoC when the sample(s) is turned over to the testing laboratory or courier.

5.9 Quality Assurance and Quality Control

An effective Quality Assurance and Quality Control (QA/QC) plan will be implemented as part of the IMP to ensure that analytical data can be used with confidence. QA/QC procedures to be initiated include the following:

- Field logs;
- Clean sampling techniques;
- CoCs;
- QA/QC Samples; and
- Data verification.

Each of these procedures is discussed in more detail in the following sections.

5.9.1 Field Logs

The purpose of field logs is to record sampling information and field observations during monitoring that may explain any uncharacteristic analytical results. Sampling information to be included in the field log include the date and time of water quality sample collection, sampling personnel, sample container identification numbers, and types of samples that were collected. Field observations should be noted in the field log for any abnormalities at the sampling location.
Field measurements for pH and turbidity should also be recorded in the field log. A Visual Inspection Field Log, an Effluent Sampling Field Log Sheet, and a Receiving Water Sampling Field Log Sheet are included in MIP Attachment 3 “Example Forms”.

5.9.2 Clean Sampling Techniques

Clean sampling techniques involve the use of certified clean containers for sample collection and clean powder-free nitrile gloves during sample collection and handling. As discussed in Section 6.8, adoption of a clean sampling approach will minimize the chance of field contamination and questionable data results.

5.9.3 Chain of Custody

The sample CoC is an important documentation step that tracks samples from collection through analysis to ensure the validity of the sample. Sample CoC procedures include the following:

- Proper labeling of samples;
- Use of CoC forms for all samples; and
- Prompt sample delivery to the analytical laboratory.

Analytical laboratories usually provide CoC forms to be filled out for sample containers. An example CoC is included in MIP Attachment 3 “Example Forms”.

5.9.4 QA/QC Samples

QA/QC samples provide an indication of the accuracy and precision of the sample collection; sample handling; field measurements; and analytical laboratory methods. The following types of QA/QC will be conducted for this project:

- Field Duplicates at a frequency of 1 duplicate minimum per sampling event. (Required for all sampling plans with field measurements or laboratory analysis)
- Equipment Blanks at a frequency of [Insert frequency required by method]. (Only needed if equipment used to collect samples could add the pollutants to sample)
- Field Blanks at a frequency of [Insert frequency required by method]. (Only required if sampling method calls for field blanks)
- Travel Blanks at a frequency of 1 duplicate minimum per sampling event. (Required for sampling plans that include VOC laboratory analysis)

5.9.4.1 Field Duplicates

Field duplicates provide verification of laboratory or field analysis and sample collection. Duplicate samples will be collected, handled, and analyzed using the same protocols as primary samples. The sample location where field duplicates are collected will be randomly selected from the discharge locations. Duplicate samples will be collected immediately after the primary sample has been collected. Duplicate samples must be collected in the same manner and as close in time as possible to the original sample. Duplicate samples will not influence any evaluations or conclusion.
5.9.4.2 Equipment Blanks

Equipment blanks provide verification that equipment has not introduced a pollutant into the sample. Equipment blanks are typically collected when:

- New equipment is used;
- Equipment that has been cleaned after use at a contaminated site;
- Equipment that is not dedicated for surface water sampling is used; or
- Whenever a new lot of filters is used when sampling metals.

5.9.4.3 Field Blanks

Field blanks assess potential sample contamination levels that occur during field sampling activities. De-ionized water field blanks are taken to the field, transferred to the appropriate container, and treated the same as the corresponding sample type during the course of a sampling event.

5.9.4.4 Travel Blanks

Travel blanks assess the potential for cross-contamination of volatile constituents between sample containers during shipment from the field to the laboratory. De-ionized water blanks are taken along for the trip and held unopened in the same cooler with the VOC samples.

5.9.5 Data Verification

After results are received from the analytical laboratory, the discharger will verify the data to ensure that it is complete, accurate, and the appropriate QA/QC requirements were met. Data must be verified as soon as the data reports are received. Data verification will include:

- Check the CoC and laboratory reports. *Make sure all requested analyses were performed and all samples are accounted for in the reports.*
- Check laboratory reports to make sure hold times were met and that the reporting levels meet or are lower than the reporting levels agreed to in the contract.
- Check data for outlier values and follow up with the laboratory. *Occasionally typographical errors, unit reporting errors, or incomplete results are reported and should be easily detected. These errors need to be identified, clarified, and corrected quickly by the laboratory. Especially note data that is an order of magnitude or more different than similar locations, or is inconsistent with previous data from the same location.*
- Check laboratory QA/QC results. *EPA establishes QA/QC checks and acceptable criteria for laboratory analyses. These data are typically reported along with the sample results. Evaluate the reported QA/QC data to check for contamination (method, field, and equipment blanks), precision (laboratory matrix spike duplicates), and accuracy (matrix spikes and laboratory control samples). When QA/QC checks are outside acceptable ranges, the laboratory must flag the data, and usually provides an explanation of the potential impact to the sample results.*
- Check the data set for outlier values and accordingly, confirm results and re-analyze samples where appropriate.
Sample re-analysis should only be undertaken when it appears that some part of the QA/QC resulted in a value out of the accepted range. Sample results may not be discounted unless the analytical laboratory identifies the required QA/QC criteria were not met and confirms this in writing.

Field data including pH measurements and visual observations must be verified as soon as the Visual Observation and Sampling Logs are received, typically at the end of the monitoring event. Field data verification will include:

- Check logs to make sure all required measurements were completed and appropriately documented;
- Check reported values that appear out of the typical range or inconsistent;
 Follow-up immediately to identify potential reporting or equipment problems, if appropriate, recalibrate equipment after sampling;
- Verify equipment calibrations;
- Review observations noted on the logs; and
- Review notations of any errors and actions taken to correct the equipment or recording errors.

5.10 Records Retention

Records of stormwater monitoring information and copies of reports (including Annual Reports) must be retained for a period of at least five (5) years from date of submittal or longer if required by the Regional Water Board.

Results of visual observations, field measurements, and laboratory analyses must be kept in the SWPPP along with CoCs, and other documentation related to the monitoring.

Records to be retained include:

- The date, place, and time of inspections, sampling, visual observations, and/or measurements, including precipitation;
- The individual(s) who performed the inspections, sampling, visual observation, and/or field measurements;
- The date and approximate time of field measurements and laboratory analyses;
- The individual(s) who performed the laboratory analyses;
- A summary of all analytical results, the method detection limits and reporting limits, and the analytical techniques or methods used;
- Weather reports;
- QA/QC records and results;
- Calibration records;
- Visual observation and sample collection exception records; and
- The records of any corrective actions and follow-up activities that resulted from analytical results, visual observations, or inspections.
MIP Attachment 2: Monitoring Records
Visual Observation Log - Monthly

<table>
<thead>
<tr>
<th>Date and Time of Inspection:</th>
<th>Report Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name:</td>
<td></td>
</tr>
</tbody>
</table>

Weather

<table>
<thead>
<tr>
<th>Antecedent Conditions (last 48 hours):</th>
<th>Current Weather:</th>
</tr>
</thead>
</table>

NSWD Observations

- **Were any authorized non-stormwater discharges observed?** Yes □ No □
- **Were any unauthorized non-stormwater discharges observed?** Yes □ No □

 If yes to either, identify source:

Outdoor Industrial Equipment and Storage Area Observations

<table>
<thead>
<tr>
<th>Complete Monthly BMP Inspection Report</th>
<th>Yes □ No □</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drainage Area 1:</td>
<td></td>
</tr>
<tr>
<td>Were any deficiencies or any other potential source of industrial pollutants observed?</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Drainage Area 2:</td>
<td></td>
</tr>
<tr>
<td>Were any deficiencies or any other potential source of industrial pollutants observed?</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Drainage Area 3:</td>
<td></td>
</tr>
<tr>
<td>Were any deficiencies or any other potential source of industrial pollutants observed?</td>
<td>Yes □ No □</td>
</tr>
</tbody>
</table>

If yes to any, describe:

Exception Documentation (explanation required if inspection could not be conducted).

Inspector Information

<table>
<thead>
<tr>
<th>Inspector Name:</th>
<th>Inspector Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature:</td>
<td>Date:</td>
</tr>
</tbody>
</table>
Visual Observation Log – Sampling Events

<table>
<thead>
<tr>
<th>Date and Time of Inspection:</th>
<th>Report Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name:</td>
<td></td>
</tr>
</tbody>
</table>

Weather

<table>
<thead>
<tr>
<th>Antecedent Conditions (last 48 hours):</th>
<th>Weather:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation Total:</td>
<td></td>
</tr>
<tr>
<td>Predicted % chance of rain:</td>
<td></td>
</tr>
<tr>
<td>Estimate storm beginning:</td>
<td></td>
</tr>
<tr>
<td>(date and time)</td>
<td></td>
</tr>
<tr>
<td>Estimate storm duration:</td>
<td></td>
</tr>
<tr>
<td>(hours)</td>
<td></td>
</tr>
<tr>
<td>Estimate time since last storm:</td>
<td></td>
</tr>
<tr>
<td>(days or hours)</td>
<td></td>
</tr>
<tr>
<td>Rain gauge reading:</td>
<td></td>
</tr>
<tr>
<td>(inches)</td>
<td></td>
</tr>
</tbody>
</table>

Sampling Event Observations

Observations: If yes identify location and observe drainage area to identify probable cause

<table>
<thead>
<tr>
<th>Odors</th>
<th>Yes □ No □</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating material</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Suspended Material</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Sheen</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Discolorations</td>
<td>Yes □ No □</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Yes □ No □</td>
</tr>
</tbody>
</table>

NSWD Observations

Were any authorized non-stormwater discharges observed? Yes □ No □

Were any **unauthorized** non-stormwater discharges observed? Yes □ No □

If yes to either, identify source

Drainage Area Observations

<table>
<thead>
<tr>
<th>Drainage Area</th>
<th>Deficiencies Noted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exception Documentation (explanation required if inspection could not be conducted).

<table>
<thead>
<tr>
<th>Inspector Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspector Name:</td>
</tr>
<tr>
<td>Signature:</td>
</tr>
</tbody>
</table>
Sampling Log

<table>
<thead>
<tr>
<th>Facility Name:</th>
<th>Date:</th>
<th>Time Start:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampler Name:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Meter Calibration

- **pH Meter ID No./Description:**
- **Calibration Date/Time:**

Field pH Measurements

<table>
<thead>
<tr>
<th>Discharge Location Identifier</th>
<th>pH</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Samples Collected

<table>
<thead>
<tr>
<th>Discharge Location Identifier</th>
<th>Constituent</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oil and Grease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Suspended Solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Sampling Notes:

- Time End:
CHAIN-OF-CUSTODY

<table>
<thead>
<tr>
<th>DESTINATION LAB:</th>
<th>DATE:</th>
<th>Lab ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADDRESS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office Phone:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Phone:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLED BY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Name:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Sample Date</th>
<th>Sample Time</th>
<th>Sample Matrix</th>
<th>#</th>
<th>Type</th>
<th>Pres.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SENDER COMMENTS:

RELINQUISHED BY

<table>
<thead>
<tr>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print:</td>
</tr>
<tr>
<td>Company:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
</tbody>
</table>

LABORATORY COMMENTS:

RECEIVED BY

<table>
<thead>
<tr>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print:</td>
</tr>
<tr>
<td>Company:</td>
</tr>
<tr>
<td>Date:</td>
</tr>
</tbody>
</table>
Section 6 References

HMBP STANDARDIZED SITE MAP SYMBOLS*

SITE MAP SYMBOLS

<table>
<thead>
<tr>
<th>ENTRANCE/EXIT</th>
<th>FENCE</th>
<th>SAFE REFUGE (Evacuation Area, Staging Area)</th>
<th>SEWER DRAIN</th>
<th>FIRE HYDRANT</th>
<th>STORM DRAIN OR CULVERT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HAZARDOUS MATERIALS STORAGE/USE AREA SYMBOLS

IMMEDIATE (ACUTE) HEALTH HAZARD
An adverse effect resulting from a short-term exposure to a chemical. Includes highly toxic, toxic, irritant, sensitizers, corrosive chemicals. Examples: cyanide, hydrochloric acid, sodium hydroxide, chlorine gas.

MATERIALS WASTE

DELAYED (CHRONIC) HEALTH
An adverse health effect resulting from long-term exposure to a substance. The effects could be a skin rash, bronchitis, cancer or any other medical condition. Examples include carcinogens such as benzene, formaldehyde, and methyl chloride.

MATERIALS WASTE

FIRE HAZARD
Includes flammable liquids and solids, combustible liquids, pyrophorics and oxidizers. Examples include solvents like acetone and alcohol, solvent based paints, gasoline, naphtha solvent, acetylene gas cylinders, propane gas.

MATERIALS WASTE

SUDDEN RELEASE OF PRESSURE
This category includes explosives, blasting agents and compressed gases. Examples: nitrogen, oxygen, acetylene, helium, carbon dioxide, etc.

MATERIALS WASTE

REACTIVE
This category includes unstable air reactive, water reactive or shock materials. Examples: organic peroxides, fine metal dusts like magnesium, aluminium, phosphorous, cyanides, sulfides and picric acid.

MATERIALS WASTE

MEDICAL (INFECTIOUS) WASTE
Medical (infectious) wastes generated in medical, dental and lab settings. Typically needles and syringes in sharp containers, infectious materials in biohazard bags, clinical and microbiological lab specimens and some pharmaceutical waste.

RADIOACTIVES
Includes mixed waste and radioactive sources used in labs and industrial settings. Examples include: Scintillation materials, nuclear medicine waste and R & D materials and waste.

EXTREMELY HAZARDOUS
Includes materials listed in Appendix A of Part 355 of Subchapter I of Chapter 1 of Title 40 of the Code of Federal Regulations. Examples include: Fluorine gases, Silane, Fumigation gases.

NOTE: Only use the above listed symbols on the site map. These symbols have been standardized throughout San Diego County and are meaningful to the local Fire Departments and Public Health Officials that will be responding in the case of an emergency.
Appendix B: Permit Registration Documents

Permit Registration Documents included in this Appendix

<table>
<thead>
<tr>
<th>Y/N</th>
<th>Permit Registration Document</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Notice of Intent</td>
</tr>
<tr>
<td></td>
<td>Certification</td>
</tr>
<tr>
<td></td>
<td>Copy of Annual Fee Receipt</td>
</tr>
<tr>
<td></td>
<td>Site Map(s), see Appendix A</td>
</tr>
</tbody>
</table>
Operator Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Transdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>352 Industrial Way</td>
</tr>
<tr>
<td>Address 2</td>
<td></td>
</tr>
<tr>
<td>City/State/Zip</td>
<td>Woodland CA 95776</td>
</tr>
<tr>
<td>Federal Tax ID</td>
<td>52-1493194</td>
</tr>
<tr>
<td>Contact Name</td>
<td>Kyle Whatley</td>
</tr>
<tr>
<td>Title</td>
<td>Transit Operations Specialist</td>
</tr>
<tr>
<td>Phone Number</td>
<td>619-238-0100</td>
</tr>
<tr>
<td>Email Address</td>
<td>kyle.whatley@sdmts.com</td>
</tr>
</tbody>
</table>

Facility Information

<table>
<thead>
<tr>
<th>Contact Name</th>
<th>Mylene Noceda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Environmental Health and Safety Specialist</td>
</tr>
<tr>
<td>Site Name</td>
<td>E Cnty Maintenance Facility</td>
</tr>
<tr>
<td>Address</td>
<td>1213 N Johnson Ave</td>
</tr>
<tr>
<td>City/State/Zip</td>
<td>El Cajon CA 92020</td>
</tr>
<tr>
<td>County</td>
<td>San Diego</td>
</tr>
<tr>
<td>Site Phone #</td>
<td>619-226-8223</td>
</tr>
<tr>
<td>Email Address</td>
<td>mylene.noceda@sdmts.com</td>
</tr>
<tr>
<td>Latitude</td>
<td>32.81247</td>
</tr>
<tr>
<td>Longitude</td>
<td>-116.971</td>
</tr>
<tr>
<td>Site Size</td>
<td>3 Acres</td>
</tr>
<tr>
<td>Site Phone #</td>
<td>619-226-8223</td>
</tr>
<tr>
<td>Email Address</td>
<td>mylene.noceda@sdmts.com</td>
</tr>
<tr>
<td>Industrial Area Exposed to Storm Water</td>
<td>800 Sq.Feet</td>
</tr>
<tr>
<td>Percent of Site Impervious (Including Rooftops)</td>
<td>%</td>
</tr>
</tbody>
</table>

SIC Code Information

1. 4173 Terminal and Service Facilities for Motor Vehicle Passenger Transportation
2. 5015 Motor Vehicle Parts, Used
3.

Additional Information

- Receiving Water: Forester Creek
 Flow: Indirectly
- Storm Drain System:
- Compliance Group:

RWQCB Jurisdiction

<table>
<thead>
<tr>
<th>Region 9 - San Diego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone: 619-516-1990</td>
</tr>
<tr>
<td>Email: r9_stormwater@waterboards.ca.gov</td>
</tr>
</tbody>
</table>

Certification

<table>
<thead>
<tr>
<th>Name: Karen Landers</th>
<th>Date: June 29, 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title: General Counsel</td>
<td></td>
</tr>
</tbody>
</table>
The application is organized into different tabs. Please complete all applicable tabs before submitting the form. If you want to complete the application at a later time, please click on "Save & Exit".

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDID</td>
<td>9 37F020896</td>
</tr>
<tr>
<td>Application ID</td>
<td>325011</td>
</tr>
<tr>
<td>Status</td>
<td>Active</td>
</tr>
<tr>
<td>Previous ID</td>
<td>-</td>
</tr>
<tr>
<td>Owner/Operator</td>
<td>Transdev</td>
</tr>
<tr>
<td>352 Industrial Way Woodland CA 95776</td>
<td></td>
</tr>
<tr>
<td>Certified Date</td>
<td>06/29/2015</td>
</tr>
<tr>
<td>Processed Date</td>
<td>05/21/2007</td>
</tr>
<tr>
<td>Site/Facility</td>
<td>E Cnty Maintenance Facility</td>
</tr>
<tr>
<td>Address</td>
<td>1213 N Johnson Ave El Cajon CA 92020</td>
</tr>
<tr>
<td>Permit Type</td>
<td>Industrial - NOI</td>
</tr>
<tr>
<td>SWRCB Application No.</td>
<td>SA325011</td>
</tr>
<tr>
<td>Permit Type</td>
<td>Industrial</td>
</tr>
<tr>
<td>Submission/Certify Date</td>
<td>06/29/2015</td>
</tr>
<tr>
<td>Certifier Name</td>
<td>Karen Landers</td>
</tr>
<tr>
<td>Certifier Title</td>
<td>General Counsel</td>
</tr>
</tbody>
</table>

The application was successfully received by the State Water Resources Control Board.

The application is organized into different tabs. Please complete all applicable tabs before submitting the form. If you want to complete the application at a later time, please click on "Save & Exit".

Fields marked with * are mandatory fields.

© 2015 State of California. Conditions of Use Privacy Policy
July 21, 2015

Kyle Whatley
Transdev
352 Industrial Way
Woodland, CA 95776

Facility Info: E Cnty Maintenance Facility
1213 N Johnson Ave
El Cajon, CA 92020

Waste Discharge Identification Number: 9 37I020896

Date Processed: May 21, 2007

RECEIPT OF YOUR NOTICE OF INTENT (NOI)

The State Water Resources Control Board (State Water Board) received and processed the NOI to comply with the terms of the General Permit for Storm Water Discharges Associated with Industrial Activity Order 2014-0057-DWQ.

Waste Discharger Identification (WDID) number 9 37I020896 is assigned to the facility referenced above.

Accordingly, you are required to comply with all applicable permit requirements.

Notice of Termination (NOT) is required to be submitted to the State Water Board should the owner or operator of the facility change or upon closure of the facility. Until an NOT is submitted you will continue and are responsible to pay the annual fee invoiced each April.

If you have any further questions, please contact your local Regional Water Board at 619-516-1990.

Please visit the storm water web page at www.waterboards.ca.gov/water_issues/programs/stormwater/industrial.shtml for storm water related information.

Sincerely,
Storm Water Program
Division of Water Quality
Appendix C: Training Reporting Form
Trained Team Member Log
Stormwater Management Training Log and Documentation

Facility Name: East County Bus Maintenance Facility

WDID #: 9371020896
Stormwater Management Topic: (check as appropriate)

☐ Good Housekeeping ☑ Preventative Maintenance
☐ Spill and Leak Prevention and Response ☑ Material Handling and Waste Management
☐ Erosion and Sediment Controls ☑ Quality Assurance and Record Keeping
☐ Advanced BMPs ☑ Visual Monitoring
☐ Stormwater Sampling and Analysis

Specific Training Objective: Industrial General Permit Overview

Location: MTS Date: July 23, 2015

Instructor: Tammie Moreno & Karina Fidler Telephone: (619) 234-9411

Course Length (hours): 1 hour

Attendee Roster (Attach additional forms if necessary)

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyle Whatley</td>
<td>MTS</td>
<td>6041</td>
</tr>
<tr>
<td>Mike Dangy</td>
<td>MTS</td>
<td>595-7035</td>
</tr>
<tr>
<td>Mylene Nocita</td>
<td>MTS</td>
<td>619-6922</td>
</tr>
<tr>
<td>Armando Acosta</td>
<td>Trans Dev.</td>
<td>619-608-4334</td>
</tr>
<tr>
<td>John Mckee</td>
<td>Trans Dev.</td>
<td>619-219-6945</td>
</tr>
<tr>
<td>Rhonda Gano</td>
<td>Transdev</td>
<td>619-572-0217</td>
</tr>
</tbody>
</table>

As needed, add proof of external training (e.g., course completion certificates, credentials for QISP).
Appendix D: Responsible Parties
Authorization of Duly Authorized Representatives

<table>
<thead>
<tr>
<th>Name of Personnel</th>
<th>Project Role</th>
<th>Company</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

____________________________ ______________________________
LRP’s Signature Date

____________________________ ______________________________
LRP Name and Title Telephone Number
Identification of QISP

Facility Name: ______________________________

WDID #: ______________________________

The following are QISPs associated with this project

<table>
<thead>
<tr>
<th>Name of Personnel⁽¹⁾</th>
<th>Company</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁽¹⁾ If additional QISPs are required, add additional lines and include information here
Appendix E: SWPPP Amendment Certifications
SWPPP Amendment No.

-

<table>
<thead>
<tr>
<th>Project Name:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Project Number:</th>
<th></th>
</tr>
</thead>
</table>

Legally Responsible Person’s Certification of the Stormwater Pollution Prevention Plan Amendment

“This Stormwater Pollution Prevention Plan and attachments were prepared under my direction to meet the requirements of the California Industrial General Permit (SWRCB Order No. 2014-0057-DWQ).”

<table>
<thead>
<tr>
<th>LRP’s Signature</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LRP Name</th>
<th>LRP Title</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Title and Affiliation</th>
<th>Telephone</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Email</th>
</tr>
</thead>
</table>
Appendix F: Calculations
Appendix G: CASQA Stormwater BMP Handbook
Portal: Industrial and Commercial Fact Sheets
Non-Stormwater Discharges

Description
Non-stormwater discharges (NSWDs) are flows that do not consist entirely of stormwater. Some non-stormwater discharges do not include pollutants and may be discharged to the storm drain if local regulations allow. These include uncontaminated groundwater and natural springs. There are also some non-stormwater discharges that typically do not contain pollutants and may be discharged to the storm drain with conditions. These include: potable water sources, fire hydrant flushing, air conditioner condensate, landscape irrigation drainage and landscape watering, emergency firefighting, etc. as discussed in Section 2.

However there are certain non-stormwater discharges that pose an environmental concern. These discharges may originate from illegal dumping of industrial material or wastes and illegal connections such as internal floor drains, appliances, industrial processes, sinks, and toilets that are illegally connected to the nearby storm drainage system through on-site drainage and piping. These unauthorized discharges (examples of which may include: process waste waters, cooling waters, wash waters, and sanitary wastewater) can carry substances such as paint, oil, fuel and other automotive fluids, chemicals and other pollutants into storm drains.

Non-stormwater discharges will need to be addressed through a combination of detection and elimination. The ultimate goal is to effectively eliminate unauthorized non-stormwater discharges to the stormwater drainage system through implementation of measures to detect, correct, and enforce against illicit connections and illegal discharges of...
pollutants on streets and into the storm drain system and downstream water bodies.

Approach

Initially the Discharger must make an assessment of non-stormwater discharges to determine which types must be eliminated or addressed through BMPs. The focus of the following approach is the elimination of unauthorized non-stormwater discharges. See other BMP Fact Sheets for activity-specific pollution prevention procedures.

General Pollution Prevention Protocols

- Implement waste management controls described in SC-34 Waste Handling and Disposal.

- Develop clear protocols and lines of communication for effectively prohibiting non-stormwater discharges, especially those that are not classified as hazardous. These are often not responded to as effectively as they need to be.

- Stencil or demarcate storm drains, where applicable, to prevent illegal disposal of pollutants. Storm drain inlets should have messages such as “Dump No Waste Drains to Stream” or similar stenciled or demarcated next to them to warn against ignorant or unintentional dumping of pollutants into the storm drainage system.

- Manage and control sources of water such as hose bibs, faucets, wash racks, irrigation heads, etc. Identify hoses and faucets in the SWPPP, and post signage for appropriate use.

Non-Stormwater Discharge Investigation Protocols

Identifying the sources of non-stormwater discharges requires the Discharger to conduct an investigation of the facility at regular intervals. There are several categories of non-stormwater discharges:

- Visible, easily identifiable discharges, typically generated as surface runoff, such as uncontained surface runoff from vehicle or equipment washing; and

- Non-visible, (e.g., subsurface) discharges into the site drainage system through a variety of pathways that are not obvious.

The approach to detecting and eliminating non-stormwater discharges will vary considerably, as discussed below:

Visible and identifiable discharges

- Conduct routine inspections of the facilities and of each major activity area and identify visible evidence of unauthorized non-stormwater discharges. This may include:

- Visual observations of actual discharges occurring;
Non-Stormwater Discharges SC-10

- Evidence of surface staining, discoloring etc. that indicates that discharges have occurred;
- Pools of water in low lying areas when a rain event has not occurred; and
- Discussions with operations personnel to understand practices that may lead to unauthorized discharges.

☐ If evidence of non-stormwater discharges is discovered:
 - Document the location and circumstances using Worksheets 5 and 6 (Section 2 of the manual), including digital photos;
 - Identify and implement any quick remedy or corrective action (e.g., moving uncovered containers inside or to a proper location); and
 - Develop a plan to eliminate the discharge. Consult the appropriate activity-specific BMP Fact Sheet for alternative approaches to manage and eliminate the discharge.

☐ Consult the appropriate activity-specific BMP Fact Sheet for alternative approaches to manage and eliminate the discharge. Make sure the facility SWPPP is up-to-date and includes applicable BMPs to address the non-stormwater discharge.

Other Illegal Discharges (Non visible)

Illicit Connections
- Locate discharges from the industrial storm drainage system to the municipal storm drain system through review of “as-built” piping schematics.
- Isolate problem areas and plug illicit discharge points.
- Locate and evaluate discharges to the storm drain system.
- Visual Inspection and Inventory:
 - Inventory and inspect each discharge point during dry weather.
 - Keep in mind that drainage from a storm event can continue for a day or two following the end of a storm and groundwater may infiltrate the underground stormwater collection system.
 - Non-stormwater discharges are often intermittent and may require periodic inspections.

Review Infield Piping
- A review of the “as-built” piping schematic is a way to determine if there are any connections to the stormwater collection system.
Non-Stormwater Discharges

- Inspect the path of loading/unloading area drain inlets and floor drains in older buildings.

- Never assume storm drains are connected to the sanitary sewer system.

Monitoring for investigation/detection of illegal discharges

- If a suspected illegal or unknown discharge is detected, monitoring of the discharge may help identify the content and/or suggest the source. This may be done with a field screening analysis, flow meter measurements, or by collecting a sample for laboratory analysis. Section 5 and Appendix D describe the necessary field equipment and procedures for field investigations.

- Investigative monitoring may be conducted over time. For example if, a discharge is intermittent, then monitoring might be conducted to determine the timing of the discharge to determine the source.

- Investigative monitoring may be conducted over a spatial area. For example, if a discharge is observed in a pipe, then monitoring might be conducted at accessible upstream locations in order to pinpoint the source of the discharge.

- Generally, investigative monitoring requiring collection of samples and submittal for lab analysis requires proper planning and specially trained staff.

Smoke Testing

Smoke testing of wastewater and stormwater collection systems is used to detect connections between the two piping systems. Smoke testing is generally performed at a downstream location and the smoke is forced upstream using blowers to create positive pressure. The advantage to smoke testing is that it can potentially identify multiple potential discharge sources at once.

- Smoke testing uses a harmless, non-toxic smoke cartridges developed specifically for this purpose.

- Smoke testing requires specialized equipment (e.g., cartridges, blowers) and is generally only appropriate for specially trained staff.

- A Standard Operating Procedure (SOP) for smoke testing is highly desirable. The SOP should address the following elements:

 ✓ Proper planning and notification of nearby residents and emergency services is necessary since introducing smoke into the system may result in false alarms;

 ✓ During dry weather, the stormwater collection system is filled with smoke and then traced back to sources;
Temporary isolation of segments of pipe using sand bags is often needed to force the smoke into leaking pipes; and

The appearance of smoke in a waste vent pipe, at a sewer manhole, or even the base of a toilet indicates that there may be a connection between the sanitary and storm water systems.

Most municipal wastewater agencies will have necessary staff and equipment to conduct smoke testing and they should be contacted if cross connections with the sanitary sewer are suspected. See SC-44 Drainage System Maintenance for more information.

Dye Testing

Dye testing is typically performed when there is a suspected specific pollutant source and location (i.e., leaking sanitary sewer) and there is evidence of dry weather flows in the stormwater collection system.

Dye is released at a probable upstream source location, either the facility’s sanitary or process wastewater system. The dye must be released with a sufficient volume of water to flush the system.

Operators then visually examine the downstream discharge points from the stormwater collection system for the presence of the dye.

Dye testing can be performed informally using commercially available products in order to conduct an initial investigation for fairly obvious cross-connections.

More detailed dye testing should be performed by properly trained staff and follow SOPs. Specialized equipment such as fluorometers may be necessary to detect low concentrations of dye.

Most municipal wastewater agencies will have necessary staff and equipment to conduct dye testing and they should be contacted if cross connections with the sanitary sewer are suspected.

TV Inspection of Drainage System

Closed Circuit Television (CCTV) can be employed to visually identify illicit connections to the industrial storm drainage system. Two types of CCTV systems are available: (1) a small specially designed camera that can be manually pushed on a stiff cable through storm drains to observe the interior of the piping, or (2) a larger remote operated video camera on treads or wheels that can be guided through storm drains to view the interior of the pipe.

CCTV systems often include a high-pressure water jet and camera on a flexible cable. The water jet cleans debris and biofilm off the inside of pipes so the camera can take video images of the pipe condition.
CCTV units can detect large cracks and other defects such as offsets in pipe ends caused by root intrusions or shifting substrate.

CCTV can also be used to detect dye introduced into the sanitary sewer.

CCTV inspections require specialized equipment and properly trained staff and are generally best left to specialized contractors or municipal public works staff.

Illegal Dumping

Substances illegally dumped on streets and into the storm drain systems and creeks may include paints, used oil and other automotive fluids, construction debris, chemicals, fresh concrete, leaves, grass clippings, and pet wastes. These wastes can cause stormwater and receiving water quality problems as well as clog the storm drain system itself.

Establish a system for tracking incidents. The system should be designed to identify the following:

- Illegal dumping hot spots;
- Types and quantities (in some cases) of wastes;
- Patterns in time of occurrence (time of day/night, month, or year);
- Mode of dumping (abandoned containers, “midnight dumping” from moving vehicles, direct dumping of materials, accidents/spills);
- An anonymous tip/reporting mechanism; and
- Evidence of responsible parties (e.g., tagging, encampments, etc.).

One of the keys to success of reducing or eliminating illegal dumping is increasing the number of people at the facility who are aware of the problem and who have the tools to at least identify the incident, if not correct it. Therefore, train field staff to recognize and report the incidents.

Once a site has been cleaned:

- Post “No Dumping” signs with a phone number for reporting dumping and disposal.
- Landscaping and beautification efforts of hot spots may also discourage future dumping, as well as provide open space and increase property values.
- Lighting or barriers may also be needed to discourage future dumping.
- See fact sheet SC-11 Spill Prevention, Control, and Cleanup.
Inspection

☐ Regularly inspect and clean up hot spots and other storm drainage areas where illegal dumping and disposal occurs.

☐ Conduct field investigations of the industrial storm drain system for potential sources of non-stormwater discharges.

☐ Pro-actively conduct investigations of high priority areas. Based on historical data, prioritize specific geographic areas and/or incident type for pro-active investigations.

Spill and Leak Prevention and Response

☐ On paved surfaces, clean up spills with as little water as possible. Use a rag for small spills, a damp mop for general cleanup, and absorbent material for larger spills. If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be sent to a certified laundry (rags) or disposed of as hazardous waste.

☐ Never hose down or bury dry material spills. Sweep up the material and dispose of properly.

☐ Use adsorbent materials on small spills rather than hosing down the spill. Remove the adsorbent materials promptly and dispose of properly.

☐ For larger spills, a private spill cleanup company or Hazmat team may be necessary.

☐ See SC-11 Spill Prevention Control and Cleanup.

Employee Training Program

☐ Training of technical staff in identifying and documenting illegal dumping incidents is required. The frequency of training must be presented in the SWPPP, and depends on site-specific industrial materials and activities.

☐ Consider posting a quick reference table near storm drains to reinforce training.

☐ Train employees to identify non-stormwater discharges and report discharges to the appropriate departments.

☐ Educate employees about spill prevention and cleanup.

☐ Well-trained employees can reduce human errors that lead to accidental releases or spills. The employee should have the tools and knowledge to immediately begin cleaning up a spill should one occur. Employees should be familiar with the Spill Prevention Control and Countermeasure Plan. Employees should be able to identify work/jobs with high potential for spills and suggest methods to reduce possibility.

☐ Determine and implement appropriate outreach efforts to reduce non-permissible non-stormwater discharges.
Conduct spill response drills annually (if no events occurred) in order to evaluate the effectiveness of the plan.

When a responsible party is identified, educate the party on the impacts of his or her actions.

Quality Assurance and Record Keeping

Performance Evaluation

- Annually review internal investigation results; assess whether goals were met and what changes or improvements are necessary.

- Obtain feedback from personnel assigned to respond to, or inspect for, illicit connections and illegal dumping incidents.

- Develop document and data management procedures.

- A database is useful for defining and tracking the magnitude and location of the problem.

- Report prohibited non-stormwater discharges observed during the course of normal daily activities so they can be investigated, contained, and cleaned up or eliminated.

- Document that non-stormwater discharges have been eliminated by recording tests performed, methods used, dates of testing, and any on-site drainage points observed.

- Annually document and report the results of the program.

- Maintain documentation of illicit connection and illegal dumping incidents, including significant conditionally exempt discharges that are not properly managed.

- Document training activities.

Potential Limitations and Work-Arounds

Some facilities may have space constraints, limited staffing and time limitations that may preclude implementation of BMPs. Provided below are typical limitations and recommended “work-arounds.”

- Many facilities do not have accurate, up-to-date ‘as-built’ plans or drawings which may be necessary in order to conduct non-stormwater discharge assessments.

 ✓ Online tools such as Google Earth™ can provide an aerial view of the facility and may be useful in understanding drainage patterns and potential sources of non-stormwater discharges

 ✓ Local municipal jurisdictions may have useful drainage systems maps.
Video surveillance cameras are commonly used to secure the perimeter of industrial facilities against break-ins and theft. These surveillance systems may also be useful for capturing illegal dumping activities. Minor, temporary adjustments to the field of view of existing surveillance camera systems to target known or suspected problem areas may be a cost-effective way of capturing illegal dumping activities and identifying the perpetrators.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Capital facility cost requirements may be minimal unless cross-connections to storm drains are detected.

- Indoor floor drains may require re-plumbing if cross-connections are detected.

- Leaky sanitary sewers will require repair or replacement which can have significant costs depending on the size and industrial activity at the facility.

Maintenance (including administrative and staffing)

- The primary effort is for staff time and depends on how aggressively a program is implemented.

- Costs for containment, and disposal of any leak or discharge is borne by the Discharger.

- Illicit connections can be difficult to locate especially if there is groundwater infiltration.

- Illegal dumping and illicit connection violations requires technical staff to detect and investigate them.

Supplemental Information

Permit Requirements

The IGP authorizes certain Non-Storm Water Discharges (NSWDs) provided BMPs are included in the SWPPP and implemented to:

- Reduce or prevent the contact of authorized NSWDs with materials or equipment that are potential sources of pollutants;

- Reduce, to the extent practicable, the flow or volume of authorized NSWDs;

- Ensure that authorized NSWDs do not contain quantities of pollutants that cause or contribute to an exceedance of a water quality standards (WQS); and,
Reduce or prevent discharges of pollutants in authorized NSWDs in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.”

References and Resources

Description

Many activities that occur at an industrial or commercial site have the potential to cause accidental spills. Preparation for accidental spills, with proper training and reporting systems implemented, can minimize the discharge of pollutants to the environment.

Spills and leaks are one of the largest contributors of stormwater pollutants. Spill prevention and control plans are applicable to any site at which hazardous materials are stored or used. An effective plan should have spill prevention and response procedures that identify hazardous material storage areas, specify material handling procedures, describe spill response procedures, and provide locations of spill clean-up equipment and materials. The plan should take steps to identify and characterize potential spills, eliminate and reduce spill potential, respond to spills when they occur in an effort to prevent pollutants from entering the stormwater drainage system, and train personnel to prevent and control future spills. An adequate supply of spill clean-up materials must be maintained onsite.

Approach

General Pollution Prevention Protocols

- Develop procedures to prevent/mitigate spills to storm drain systems.

- Develop and standardize reporting procedures, containment, storage, and disposal activities, documentation, and follow-up procedures.

- Establish procedures and/or controls to minimize spills and leaks. The procedures should address:
 - Description of the facility, owner and address, activities, chemicals, and quantities present;

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment</td>
<td></td>
</tr>
<tr>
<td>Nutrients</td>
<td></td>
</tr>
<tr>
<td>Trash</td>
<td></td>
</tr>
<tr>
<td>Metals</td>
<td>✓</td>
</tr>
<tr>
<td>Bacteria</td>
<td>✓</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>✓</td>
</tr>
<tr>
<td>Organics</td>
<td>✓</td>
</tr>
</tbody>
</table>

Minimum BMPs Covered

- Good Housekeeping
- Preventative Maintenance
- Spill and Leak Prevention and Response ✓
- Material Handling & Waste Management
- Erosion and Sediment Controls
- Employee Training Program ✓
- Quality Assurance Record Keeping ✓
Facility map of the locations of industrial materials;
Notification and evacuation procedures;
Cleanup instructions;
Identification of responsible departments; and
Identify key spill response personnel.

- Recycle, reclaim, or reuse materials whenever possible. This will reduce the amount of process materials that are brought into the facility.

Spill and Leak Prevention and Response

Spill Prevention

- Develop procedures to prevent/mitigate spills to storm drain systems. Develop and standardize reporting procedures, containment, storage, and disposal activities, documentation, and follow-up procedures.

- If illegal dumping is observed at the facility:
 - Post “No Dumping” signs with a phone number for reporting illegal dumping and disposal. Signs should also indicate fines and penalties applicable for illegal dumping.
 - Landscaping and beautification efforts may also discourage illegal dumping.
 - Bright lighting and/or entrance barriers may also be needed to discourage illegal dumping.

- Store and contain liquid materials in such a manner that if the container is ruptured, the contents will not discharge, flow, or be washed into the storm drainage system, surface waters, or groundwater.

- If the liquid is oil, gas, or other material that separates from and floats on water, install a spill control device (such as a tee section) in the catch basins that collects runoff from the storage tank area.

Preventative Maintenance

- Place drip pans or absorbent materials beneath all mounted taps, and at all potential drip and spill locations during filling and unloading of tanks. Any collected liquids or soiled absorbent materials must be reused/recycled or properly disposed.

- Store and maintain appropriate spill cleanup materials in a location known to all near the tank storage area; and ensure that employees are familiar with the site’s spill control plan and/or proper spill cleanup procedures.
Spill Prevention, Control & Cleanup

- Sweep and clean the storage area monthly if it is paved, *do not hose down the area to a storm drain*.

- Check tanks (and any containment sumps) daily for leaks and spills. Replace tanks that are leaking, corroded, or otherwise deteriorating with tanks in good condition. Collect all spilled liquids and properly dispose of them.

- Label all containers according to their contents (e.g., solvent, gasoline).

- Label hazardous substances regarding the potential hazard (corrosive, radioactive, flammable, explosive, poisonous).

- Prominently display required labels on transported hazardous and toxic materials (per US DOT regulations).

- Identify key spill response personnel.

Spill Response

- Clean up leaks and spills immediately.

- Place a stockpile of spill cleanup materials where it will be readily accessible (e.g., near storage and maintenance areas).

- On paved surfaces, clean up spills with as little water as possible.
 - Use a rag for small spills, a damp mop for general cleanup, and absorbent material for larger spills.
 - If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be sent to a certified laundry (rags) or disposed of as hazardous waste.
 - If possible use physical methods for the cleanup of dry chemicals (e.g., brooms, shovels, sweepers, or vacuums).

- Never hose down or bury dry material spills. Sweep up the material and dispose of properly.

- Chemical cleanups of material can be achieved with the use of adsorbents, gels, and foams. Use adsorbent materials on small spills rather than hosing down the spill. Remove the adsorbent materials promptly and dispose of properly.

- For larger spills, a private spill cleanup company or Hazmat team may be necessary.
Spill Prevention, Control & Cleanup SC-11

Reporting

- Report spills that pose an immediate threat to human health or the environment to the Regional Water Quality Control Board or local authority as location regulations dictate.

- Federal regulations require that any oil spill into a water body or onto an adjoining shoreline be reported to the National Response Center (NRC) at 800-424-8802 (24 hour).

- Report spills to 911 for dispatch and clean-up assistance when needed. Do not contact fire agencies directly.

- Establish a system for tracking incidents. The system should be designed to identify the following:
 - Types and quantities (in some cases) of wastes;
 - Patterns in time of occurrence (time of day/night, month, or year);
 - Mode of dumping (abandoned containers, “midnight dumping” from moving vehicles, direct dumping of materials, accidents/spills);
 - Clean-up procedures; and
 - Responsible parties.

Employee Training Program

- Educate employees about spill prevention and cleanup.

- Well-trained employees can reduce human errors that lead to accidental releases or spills:
 - The employee should have the tools and knowledge to immediately begin cleaning up a spill should one occur; and
 - Employees should be familiar with the Spill Prevention Control and Countermeasure Plan.

- Employees should be educated about aboveground storage tank requirements. Employees responsible for aboveground storage tanks and liquid transfers should be thoroughly familiar with the Spill Prevention Control and Countermeasure Plan and the plan should be readily available.

- Train employees to recognize and report illegal dumping incidents.
Other Considerations (Limitations and Regulations)

- State regulations exist for facilities with a storage capacity of 10,000 gallons or more of petroleum to prepare a Spill Prevention Control and Countermeasure (SPCC) Plan (Health & Safety Code Chapter 6.67).

- State regulations also exist for storage of hazardous materials (Health & Safety Code Chapter 6.95), including the preparation of area and business plans for emergency response to the releases or threatened releases.

- Consider requiring smaller secondary containment areas (less than 200 sq. ft.) to be connected to the sanitary sewer, prohibiting any hard connections to the storm drain.

Requirements

Costs (including capital and operation & maintenance)

- Will vary depending on the size of the facility and the necessary controls.

- Prevention of leaks and spills is inexpensive. Treatment and/or disposal of contaminated soil or water can be quite expensive.

Maintenance (including administrative and staffing)

- Develop spill prevention and control plan, provide and document training, conduct inspections of material storage areas, and supply spill kits.

- Extra time is needed to properly handle and dispose of spills, which results in increased labor costs.

Supplemental Information

Further Detail of the BMP

Reporting

Record keeping and internal reporting represent good operating practices because they can increase the efficiency of the facility and the effectiveness of BMPs. A good record keeping system helps the facility minimize incident recurrence, correctly respond with appropriate cleanup activities, and comply with legal requirements. A record keeping and reporting system should be set up for documenting spills, leaks, and other discharges, including discharges of hazardous substances in reportable quantities. Incident records describe the quality and quantity of non-stormwater discharges to the storm sewer. These records should contain the following information:

- Date and time of the incident;

- Weather conditions;

- Duration of the spill/leak/discharge;
Cause of the spill/leak/discharge;
Response procedures implemented;
Persons notified; and
Environmental problems associated with the spill/leak/discharge.

Separate record keeping systems should be established to document housekeeping and preventive maintenance inspections, and training activities. All housekeeping and preventive maintenance inspections should be documented. Inspection documentation should contain the following information:

- Date and time the inspection was performed;
- Name of the inspector;
- Items inspected;
- Problems noted;
- Corrective action required; and
- Date corrective action was taken.

Other means to document and record inspection results are field notes, timed and dated photographs, videotapes, and drawings and maps.

Aboveground Tank Leak and Spill Control

Accidental releases of materials from aboveground liquid storage tanks present the potential for contaminating stormwater with many different pollutants. Materials spilled, leaked, or lost from tanks may accumulate in soils or on impervious surfaces and be carried away by stormwater runoff.

The most common causes of unintentional releases are:

- Installation problems;
- Failure of piping systems (pipes, pumps, flanges, couplings, hoses, and valves);
- External corrosion and structural failure;
- Spills and overfills due to operator error; and
- Leaks during pumping of liquids or gases from truck or rail car to a storage tank or vice versa.
Storage of reactive, ignitable, or flammable liquids should comply with the Uniform Fire Code and the National Electric Code. Practices listed below should be employed to enhance the code requirements:

- Tanks should be placed in a designated area.
- Tanks located in areas where firearms are discharged should be encapsulated in concrete or the equivalent.
- Designated areas should be impervious and paved with Portland cement concrete, free of cracks and gaps, in order to contain leaks and spills.
- Liquid materials should be stored in UL approved double walled tanks or surrounded by a curb or dike to provide the volume to contain 10 percent of the volume of all of the containers or 110 percent of the volume of the largest container, whichever is greater. The area inside the curb should slope to a drain.
- For used oil or dangerous waste, a dead-end sump should be installed in the drain.
- All other liquids should be drained to the sanitary sewer if available. The drain must have a positive control such as a lock, valve, or plug to prevent release of contaminated liquids.
- Accumulated stormwater in petroleum storage areas should be passed through an oil/water separator.

Maintenance is critical to preventing leaks and spills. Conduct routine inspections and:

- Check for external corrosion and structural failure.
- Check for spills and overfills due to operator error.
- Check for failure of piping system (pipes, pumps, flanges, coupling, hoses, and valves).
- Check for leaks or spills during pumping of liquids or gases from truck or rail car to a storage facility or vice versa.
- Visually inspect new tank or container installation for loose fittings, poor welding, and improper or poorly fitted gaskets.
- Inspect tank foundations, connections, coatings, and tank walls and piping system. Look for corrosion, leaks, cracks, scratches, and other physical damage that may weaken the tank or container system.
- Frequently relocate accumulated stormwater during the wet season.
Periodically conduct integrity testing by a qualified professional.

Vehicle Leak and Spill Control

Major spills on roadways and other public areas are generally handled by highly trained Hazmat teams from local fire departments or environmental health departments. The measures listed below pertain to leaks and smaller spills at vehicle maintenance shops.

In addition to implementing the spill prevention, control, and clean up practices above, use the following measures related to specific activities:

Vehicle and Equipment Maintenance

- Perform all vehicle fluid removal or changing inside or under cover to prevent the run-on of stormwater and the runoff of spills.
- Regularly inspect vehicles and equipment for leaks, and repair immediately.
- Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite.
- Always use secondary containment, such as a drain pan or drop cloth, to catch spills or leaks when removing or changing fluids.
- Immediately drain all fluids from wrecked vehicles.
- Store wrecked vehicles or damaged equipment under cover.
- Place drip pans or absorbent materials under heavy equipment when not in use.
- Use absorbent materials on small spills rather than hosing down the spill.
- Remove the adsorbent materials promptly and dispose of properly.
- Promptly transfer used fluids to the proper waste or recycling drums. Don’t leave full drip pans or other open containers lying around.
- Oil filters disposed of in trashcans or dumpsters can leak oil and contaminate stormwater. Place the oil filter in a funnel over a waste oil recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask your oil supplier or recycler about recycling oil filters.
- Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries, even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking.
Vehicle and Equipment Fueling

- Design the fueling area to prevent the run-on of stormwater and the runoff of spills:
 - Cover fueling area if possible.
 - Use a perimeter drain or slope pavement inward with drainage to a sump.
 - Pave fueling area with concrete rather than asphalt.
- If dead-end sump is not used to collect spills, install an oil/water separator.
- Install vapor recovery nozzles to help control drips as well as air pollution.
- Discourage “topping-off” of fuel tanks.
- Use secondary containment when transferring fuel from the tank truck to the fuel tank.
- Use absorbent materials on small spills and general cleaning rather than hosing down the area. Remove the absorbent materials promptly.
- Carry out all Federal and State requirements regarding underground storage tanks, or install above ground tanks.
- Do not use mobile fueling of mobile industrial equipment around the facility; rather, transport the equipment to designated fueling areas.
- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Train employees in proper fueling and cleanup procedures.

Industrial Spill Prevention Response

For the purposes of developing a spill prevention and response program to meet the stormwater regulations, facility managers should use information provided in this fact sheet and the spill prevention/response portions of the fact sheets in this handbook, for specific activities.

The program should:

- Integrate with existing emergency response/hazardous materials programs (e.g., Fire Department).
- Develop procedures to prevent/mitigate spills to storm drain systems.
- Identify responsible departments.
Spill Prevention, Control & Cleanup SC-11

- Develop and standardize reporting procedures, containment, storage, and disposal activities, documentation, and follow-up procedures.

- Address spills at municipal facilities, as well as public areas.

- Provide training concerning spill prevention, response and cleanup to all appropriate personnel.

References and Resources

Clark County Storm Water Pollution Control Manual. Available online at: http://www.co.clark.wa.us/pubworks/bmpman.pdf.

King County Storm Water Pollution Control Manual. Available online at: http://dnr.metrokc.gov/wlr/dss/spcm.htm.

Description
Spills and leaks that occur during vehicle and equipment fueling can contribute hydrocarbons, oil and grease, as well as heavy metals, to stormwater runoff. Implementing the following management practices can help prevent fuel spills and leaks.

Approach
- Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols
- Use properly maintained off-site fueling stations whenever possible. These businesses are better equipped to handle fuel and spills properly.
- Focus pollution prevention activities on containment of spills and leaks, most of which may occur during liquid transfers.

Good Housekeeping
- "Spot clean" leaks and drips routinely. Leaks are not cleaned up until the absorbent is picked up and disposed of properly.
- Manage materials and waste properly (see Material Handling and Waste Management) to reduce adverse impacts on stormwater quality.
- Paint signs on storm drain inlets to indicate that they are not to receive liquid or solid wastes.
- Post signs at sinks to remind employees not to pour wastes down drains.

Objectives
- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents
- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Minimum BMPs Covered
- Good Housekeeping
- Preventative Maintenance
- Spill and Leak Prevention and Response
- Material Handling & Waste Management
- Erosion and Sediment Controls
- Employee Training Program
- Quality Assurance Record Keeping
Vehicle and Equipment Fueling

- Clean yard storm drain inlets(s) regularly and especially after large storms.
- Do not pour materials down storm drains.
- Build a shed or temporary roof over fueling area to limit exposure to rain.
- Post signs to remind employees and customers not to top off the fuel tank when filling and signs that ban customers and employees from changing engine oil or other fluids at that location.
- Report leaking vehicles to fleet maintenance.
- Ensure the following safeguards are in place:
 - Overflow protection devices on tank systems to warn the operator or automatically shut down transfer pumps when the tank reaches full capacity.
 - Protective guards around tanks and piping to prevent vehicle or forklift damage.
 - Clear tagging or labeling of all valves to reduce human error.
 - Emergency shut-off and emergency phone number.

Preventative Maintenance

Fuel Dispensing Areas

- Inspect vehicles and equipment for leaks regularly and repair immediately.
- Sweep the fueling area weekly, if it is paved, to collect loose particles, and wipe up spills with rags and other absorbent material immediately. Do not hose down the area to a storm drain.
- Fit underground storage tanks with spill containment and overfill prevention systems meeting the requirements of Section 2635(b) of Title 23 of the California Code of Regulations.
- Fit fuel dispensing nozzles with "hold-open latches" (automatic shutoffs) except where prohibited by local fire departments.
- Post signs at the fuel dispenser or fuel island warning vehicle owners/operators against "topping off" of vehicle fuel tanks.
- Design fueling area to prevent stormwater runoff and spills. Use a perimeter drain or slope pavement inward with drainage to sump; regularly remove materials accumulated in sump.
- Pave area with concrete rather than asphalt.
Vehicle and Equipment Fueling SC-20

- Cover fueling area with an overhanging roof structure or canopy so that precipitation cannot come in contact with the fueling area. Where covering is not feasible and the fuel island is surrounded by pavement, apply a suitable sealant that protects the asphalt from spilled fuels.

- Install vapor recovery nozzles to help control drips as well as air pollution.

- Use secondary containment when transferring fuel from the tank truck to the fuel tank. Cover storm drains in the vicinity during transfer.

Air/Water Supply Area

- Minimize the possibility of stormwater pollution from air/water supply areas by doing at least one of the following:

 - Spot clean leaks and drips routinely to prevent runoff of spillage.

 - Grade and pave the air/water supply area to prevent run-on of stormwater.

 - Install a roof over the air/water supply area.

 - Install a low containment berm around the air/water supply area.

Inspection

- **Aboveground Tank Leak and Spill Control:**

 - Check for external corrosion and structural failure.

 - Check for spills and overfills due to operator error.

 - Check for failure of piping system.

 - Check for leaks or spills during pumping of liquids or gases from truck or rail car to a storage facility or vice versa.

 - Visually inspect new tank or container installation for loose fittings, poor welding, and improper or poorly fitted gaskets.

 - Inspect tank foundations, connections, coatings, and tank walls and piping system. Look for corrosion, leaks, cracks, scratches, and other physical damage that may weaken the tank or container system.

 - Conduct integrity testing periodically by a qualified professional.

- Inspect and clean, if necessary, storm drain inlets and catch basins within the facility boundary before October 1 each year.
Spill Response and Prevention Procedures

☐ Keep your spill prevention and control plan up-to-date.

☐ Maintain an adequate stockpile of spill cleanup materials at locations where it will be readily accessible.

☐ Clean leaks, drips, and other spills with as little water as possible.
 ✓ Use rags for small spills,
 ✓ Use a damp mop for general cleanup,
 ✓ Use dry absorbent material for larger spills.

☐ Use the following three-step method for cleaning floors:
 ✓ Clean spills with rags or other absorbent materials
 ✓ Sweep floor using dry absorbent material
 ✓ Mop the floor. Mop water may be discharged to the sanitary sewer via a toilet or sink.

☐ Remove the adsorbent materials promptly and dispose of properly when using absorbent materials on small spills.

☐ Store portable absorbent booms (long flexible shafts or barriers made of absorbent material) in unbermed fueling areas.

☐ Report spills promptly.

☐ If a dead-end sump is not used to collect spills, install an oil/water separator.

Material Handling and Waste Management

☐ Do not pour liquid wastes into floor drains, sinks, outdoor storm drain inlets, or other storm drains or sewer connections.

☐ Do not put used or leftover cleaning solutions, solvents, and automotive fluids in the sanitary sewer.

☐ Collect leaking or dripping fluids in drip pans or containers. Fluids are easier to recycle if kept separate.

☐ Promptly transfer used fluids to the proper waste or recycling drums. Do not leave drip pans or other open containers lying around.
Minimize the possibility of stormwater pollution from outside waste receptacles by doing at least one of the following:

- Use only watertight waste receptacle(s) and keep the lid(s) closed.
- Grade and pave the waste receptacle area to prevent run-on of stormwater.
- Install a roof over the waste receptacle area.
- Install a low containment berm around the waste receptacle area.
- Use and maintain drip pans under waste receptacles.

Post “no littering” signs.

Employee Training Program

- Educate employees about facility-wide pollution prevention measures and goals.
- Train designated employees (e.g., those involved with the handling or management of fuels) on proper fueling and cleanup procedures.
- Train designated employees upon hiring and annually thereafter on proper methods for handling and disposing of waste. Make sure that all employees understand stormwater discharge prohibitions, wastewater discharge requirements, and these best management practices.
- Ensure that employees are familiar with the site’s spill control plan and/or proper spill cleanup procedures.
- Use a training log or similar method to document training. The training log should include entries for:
 - Training topic,
 - Trainer,
 - Attendees,
 - Frequency,
 - Comments,
 - Target date for completion of training, and
 - Date completed.
Quality Assurance and Record Keeping

- Keep accurate maintenance logs that document minimum BMP activities performed for vehicle and equipment fueling, quantities of materials removed, and improvement actions.
- Keep accurate logs of spill response actions that document what types of liquids were spilled, how it was cleaned up, and how the waste was disposed.
- Establish procedures to complete logs and file them in the central office.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- The retrofitting of existing fueling areas to minimize stormwater exposure or spill runoff can be expensive. Good design must occur during the initial installation. Extruded curb along the “upstream” side of the fueling area to prevent stormwater run-on is of modest cost.
- Capital investments will likely be required at some sites if adequate cover and containment facilities do not exist and can vary significantly depending upon site conditions.

Maintenance

- Most of the operations and maintenance activities associated with implementing this BMP are integrally linked to routine operations as previously described. Therefore additional O&M is not required.
- For facilities responsible for pre-treating their wastewater prior to discharging, the proper functioning of structural treatment system is an important maintenance consideration.
- Routine cleanout of sumps and oil/water separators is required for the devices to maintain their effectiveness, usually at least once a month. During periods of heavy rainfall, cleanout is required more often to ensure pollutants are not washed through the system. Sediment removal is also required on a regular basis to keep the device working efficiently.

Supplemental Information

Designing New Installations

The elements listed below should be included in the design and construction of new or substantially remodeled facilities.

Fuel Dispensing Areas

- Fuel dispensing areas must be paved with Portland cement concrete (or, equivalent smooth impervious surface), with a 2 to 4% slope to prevent ponding, and must be
separated from the rest of the site by a grade break that prevents run-on of stormwater to the extent practicable. The fuel dispensing area is defined as extending 6.5 feet from the corner of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus 1 foot, whichever is less. The paving around the fuel dispensing area may exceed the minimum dimensions of the "fuel dispensing area" stated above.

- The fuel dispensing area must be covered, and the cover’s minimum dimensions must be equal to or greater than the area within the grade break or the fuel dispensing area, as defined above. The cover must not drain onto the fuel dispensing area.

- If necessary, install and maintain an oil control device in the appropriate catch basin(s) to treat runoff from the fueling area.

Outdoor Waste Receptacle Area

- Grade and pave the outdoor waste receptacle area to prevent run-on of stormwater to the extent practicable.

Air/Water Supply Area

- Grade and pave the air/water supply area to prevent run-on of stormwater to the extent practicable.

Designated Fueling Area

- If your facility has large numbers of mobile equipment working throughout the site and you currently fuel them with a mobile fuel truck, consider establishing a designated fueling area. With the exception of tracked equipment such as bulldozers and perhaps small forklifts, most vehicles should be able to travel to a designated area with little lost time. Place temporary “caps” over nearby catch basins or manhole covers so that if a spill occurs it is prevented from entering the storm drain.

Examples

The Spill Prevention Control and Countermeasure (SPCC) Plan, which is required by law for some facilities, is an effective program to reduce the number of accidental spills and minimize contamination of stormwater runoff.

The City of Palo Alto has an effective program for commercial vehicle service facilities. Many of the program’s elements, including specific BMP guidance and lists of equipment suppliers, are also applicable to industrial facilities.

References and Resources

Vehicle and Equipment Fueling SC-20

Vehicle and Equipment Cleaning SC-21

Description
Wash water from vehicle and equipment cleaning activities performed outdoors or in areas where wash water flows onto the ground can contribute toxic hydrocarbons and other organic compounds, oils and greases, nutrients, phosphates, heavy metals, and suspended solids to stormwater runoff. Use of the procedures outlined below can prevent or reduce the discharge of pollutants to stormwater during vehicle and equipment cleaning.

Approach
Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives

General Pollution Prevention Protocols
- If possible, use properly maintained off-site commercial washing and steam cleaning businesses whenever possible. These businesses are better equipped to handle and properly dispose of the wash waters.
- Use dry cleaning methods to remove debris and sweep area; avoid washing with water when possible.
- Good housekeeping practices can minimize the risk of contamination from wash water discharges.
- Use biodegradable, phosphate-free detergents for washing vehicles as appropriate
- Emphasize the connection between the storm drain system and runoff, help reinforce that vehicle and equipment washing activities affect local water quality through storm drain stenciling programs.

Objectives
- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents
- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Minimum BMPs Addressed
- Good Housekeeping
- Preventative Maintenance
- Spill and Leak Prevention and Response
- Material Handling & Waste Management
- Erosion and Sediment Controls
- Employee Training Program
- Quality Assurance Record Keeping

CASQA
CALIFORNIA STORMWATER QUALITY ASSOCIATION®
Vehicle and Equipment Cleaning SC-21

- Map on-site storm drain locations to avoid discharges to the storm drain system.
- Designate specific wash area with clarifier or place wash areas away from storm drain connections.

Good Housekeeping

- Mark the area clearly as a wash area by:
 - Posting signs stating that only washing is allowed in wash area; and
 - Providing information on how washing is to be done.

- Provide trash containers in wash area.

- Have all vehicle and equipment washing done in areas designed to collect and hold the wash and rinse water or effluent generated. Recycle, collect or treat wash water effluent prior to discharge to the sanitary sewer system.

- If washing/cleaning must occur on-site, consider washing vehicles and equipment inside the building or on an impervious surface to control the targeted constituents by directing them to the sanitary sewer.

- If washing must occur on-site and outdoor:
 - Use designated paved wash areas. This area must be covered or bermed to collect the wash water and graded to direct the wash water to a treatment or disposal facility.
 - Do not conduct oil changes and other engine maintenance in the designated washing area. Perform these activities in a place designated for oil change and maintenance activities.
 - Cover the wash area when not in use to prevent contact with rain water.

- Do not permit steam cleaning wash water to enter the storm drain system.

- If possible, conduct pressure and steam cleaning at appropriate off-site areas to avoid generating runoff with high pollutant concentrations.

Preventative Maintenance

- Install sumps or drain lines to collect wash water for treatment.
- Use hoses with nozzles that automatically turn off when left unattended.
- Perform routine inspections of drain lines, holding tanks, and hoses and repair leaks immediately.
Vehicle and Equipment Cleaning SC-21

- Perform routine inspection and maintenance of wash water recycling and treatment systems.

Spill Response and Prevention Procedures

- Keep the spill prevention and control plan up-to-date.
- Have an emergency plan, equipment, and trained personnel ready at all times to deal immediately with major spills.
- Collect all spilled liquids and properly dispose of them.
- Store and maintain appropriate spill cleanup materials in a location known to all near the designated wash area.

Material Handling and Waste Management

- Collect all wash water from vehicle and equipment cleaning operations. Consider treating and reusing or discharging wash waters to a sanitary sewer system.
- Large quantities of wash waters may require treatment at the facility. Treatment using a process treatment system (e.g., holding tank, filtration system, and related appurtenances) will require engineering and capital expenditures.
- Collect and treat small amounts of wash water at the facility and either recycle or discharge to the sanitary sewer system or collect and dispose of as an industrial waste.
- Discharge wash waters into sanitary sewer only after contacting local sewer authority to find out if pretreatment is required.

Employee Training Program

- Train employees on proper cleaning and wash water disposal procedures and conduct “refresher” courses on a regular basis.
- Train staff on proper maintenance measures for the wash area.
- Train employees and contractors on proper spill containment and cleanup. The employee should have the tools and knowledge to immediately begin cleaning up a spill should one occur.
- Use a training log or similar method to document training.

Quality Assurance and Record Keeping

- Keep accurate maintenance/inspection logs that document the minimum BMP activities performed for vehicle and equipment cleaning activities and improvement actions.
Vehicle and Equipment Cleaning SC-21

- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.

- Establish procedures to complete logs and file them in the central office.

Other Facility-Specific Considerations

- Some municipalities may require pretreatment and monitoring of wash water discharges to the sanitary sewer.

- Steam cleaning can generate significant pollutant concentrations requiring that careful consideration be given to the environmental impacts and compliance issues related to the condensate wastewater generated.

Potential Limitations and Work-Arounds

Some facilities may have space constraints, limited staffing and time limitations that may preclude implementation of certain BMPs. Provided below are typical limitations and recommended “work-arounds”:

- Most car washing best management practices are inexpensive, and rely more on good housekeeping practices (where vehicles are washed, planning for the collection of wash water) than on expensive technology. However, the construction of a specialized area for vehicle washing can be expensive. Also, for facilities that cannot recycle their wash water, the cost of pre-treating wash water through either structural practices or planning for collection and hauling of contaminated water to sewage treatment plants can be cost-prohibitive.

- A potential work-around is to use properly maintained off-site commercial washing and steam cleaning businesses whenever possible.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Many facilities will already have indoor covered areas where vehicle and equipment cleaning takes place and will require no additional capital expenditures for providing cover.

- Capital investments will be required at some sites if systems to collect and recycle/treat and properly discharge wash water are not in place. The cost associated with these investments will vary depending on the size of the washing facility and local regulations regarding effluent wash water.

Maintenance

- Perform wash and collection system inspections and repair.

- Sweep washing areas frequently to remove solid debris.
Repair berms and dikes as necessary.

Inspect and maintain sumps, oil/water separators, and on-site treatment/recycling units.

Supplemental Information

Designated Cleaning Areas

Washing operations outside should be conducted in a designated wash area having the following characteristics:

- Paved with Portland cement concrete
- Covered and bermed to prevent contact with stormwater and contain wash water
- Sloped for wash water collections
- Drainage system for wash water to the sanitary or recycle treatment process waste sewer, or to a dead-end sump equipped with an oil/water separator if necessary.

References and Resources

Vehicle and Equipment Cleaning SC-21

Description

Vehicle or equipment maintenance and repair are potentially significant sources of stormwater pollution, due to use of harmful materials and wastes during maintenance and repair processes. Engine repair and service (e.g., parts cleaning), replacement of fluids (e.g., oil change), and outdoor equipment storage and parking (leaking vehicles) can impact water quality if stormwater runoff from areas with these activities becomes polluted by a variety of contaminants. Implementation of the following activities must be done where applicable to prevent or reduce the discharge of pollutants to stormwater from vehicle and equipment maintenance and repair activities.

Approach

The BMP approach is to reduce the potential for pollutant discharges through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives. General pollution prevention protocols are presented followed by applicable minimum BMPs as required by the Industrial General Permit.

General Pollution Prevention Protocols

- Designate a vehicle maintenance area designed to prevent stormwater pollution.
- Minimize contact of stormwater with outside operations through berming and appropriate drainage routing.
- Keep accurate maintenance logs to evaluate materials removed and improvements made.
- Switch to non-toxic chemicals for maintenance when possible.
- Choose cleaning agents that can be recycled.
- Use drop cloths and drip pans.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Minimum BMPs Covered

- Good Housekeeping
- Preventative Maintenance
- Spill and Leak Prevention and Response
- Material Handling & Waste Management
- Erosion and Sediment Controls
- Employee Training Program
- Quality Assurance Record Keeping
Vehicle and Equipment Repair

- Minimize use of solvents. Clean parts without using solvents whenever possible, or use water-based solvents for cleaning.

- Recycle used motor oil, diesel oil, and other vehicle fluids and parts whenever possible.

Operational Protocols

General

- Move maintenance and repair activities indoors whenever feasible.

- Place curbs around the immediate boundaries of process equipment.

Good Housekeeping

- Store idle equipment under cover.

- Use a vehicle maintenance area designed to prevent stormwater pollution - minimize contact of stormwater with outside operations through berming and appropriate drainage routing.

- Avoid hosing down your work areas. If work areas are washed, collect and direct wash water to sanitary sewer. Use dry sweeping if possible.

- Paint signs on storm drain inlets to indicate that they are not to receive liquid or solid wastes.

- Post signs at sinks to remind employees not to pour wastes down drains.

- Clean yard storm drain inlets(s) regularly and especially after large storms.

- Do not pour materials down storm drains.

- Cover the work area to limit exposure to rain.

- Place curbs around the immediate boundaries of process equipment.

- Build a shed or temporary roof over areas where parked cars await repair or salvage, especially wrecked vehicles. Build a roof over vehicles kept for parts.

Preventive Maintenance and Repair Activities

- Provide a designated area for vehicle maintenance.

- Inspect vehicles and equipment for leaks regularly and repair immediately.

- Make sure incoming vehicles are checked for leaking oil and fluids. Do not allow leaking vehicles or equipment on-site without correcting the source of the leak and cleaning up any spill.

- Keep equipment clean; don’t allow excessive build-up of oil and grease.
Perform all vehicle fluid removal or changing inside or under cover if possible to prevent the run-on of stormwater and the runoff of spills.

Use a tarp, ground cloth, or drip pans beneath the vehicle or equipment to capture all spills and drips if temporary work is being conducted outside. Collected drips and spills must be disposed, reused, or recycled properly.

It is important to sweep the maintenance area weekly, if it is paved, to collect loose particles, and wipe up spills with rags and other absorbent material immediately. Do not hose down the area to a storm drain.

Establish standard procedures to prevent spillage/leakage of fluids including:

- Keep a drip pan under the vehicle while you unclip hoses, unscrew filters, or remove other parts. Use a drip pan under any vehicle that might leak while working on it to keep splatters or drips off the shop floor.

- Promptly transfer used fluids to the proper waste or recycling drums. Do not leave drip pans or other open containers lying around.

- Keep drip pans or containers under vehicles or equipment that may drip during repairs.

- Do not change motor oil or perform equipment maintenance in non-appropriate areas.

Drain oil and other fluids first if the vehicle or equipment is to be stored outdoors. Elevate and tarp stored vehicles and equipment.

Monitor parked vehicles closely for leaks. Pans should be placed under any leaks to collect the fluids for proper disposal or recycling.

Mechanics should clean vehicle parts without using liquid cleaners wherever possible to reduce waste.

Steam cleaning and pressure washing may be used instead of solvent parts cleaning. The wastewater generated from steam cleaning must be discharged to an on-site oil water separator that is connected to a sanitary sewer or blind sump. Non-caustic detergents should be used instead of caustic cleaning agents, detergent-based or water-based cleaning systems in place of organic solvent degreasers, and non-chlorinated solvent in place of chlorinated organic solvents for parts cleaning. Refer to SC21 for more information on steam cleaning.

Fifth-wheel bearings on trucks require routine lubrication. Typically chassis grease is applied to the fifth-wheel bearing at rates that result in grease dripping off of the bearing into the environment. To address this concern the following options are available:

- Use specialized lubricants with good adhesion (e.g., stay in place) properties. Carefully follow manufacturer’s label regarding the use of adhesive lubricant for
Vehicle and Equipment Repair

truck fifth-wheels. Typically this means applying no more than 8 oz. of grease. No visible extrusion of lubricant from the fifth-wheel bearing when truck and trailer are connected should be present.

✓ Use on-board truck or on-board trailer automatic lubrication systems. If these systems apply lube thinner than National Grease Lubrication Institute #2, equipment for collection of used lubricant is needed to prevent excess lubricant from dripping off the truck.

✓ Use plastic or Teflon plates instead of grease or other lubricants. Carefully follow manufacturer’s instructions for installation and operation.

☐ Use one of the following for lubricating vehicle-trailer coupling:

✓ Specialized adhesive lubricants;

✓ Grease-free fifth wheel slip plates (e.g., plastic or Teflon coatings); and

✓ On-Board automatic lubricating systems.

Spill and Leak Prevention and Response Procedures

☐ Keep your spill prevention and control plan up-to-date.

☐ Place an adequate stockpile of spill cleanup materials where it will be readily accessible.

☐ Clean leaks, drips, and other spills with as little water as possible. Use rags for small spills, a damp mop for general cleanup, and dry absorbent material for larger spills. Use the following three-step method for cleaning floors:

✓ Clean spills with rags or other absorbent materials;

✓ Sweep floor using dry absorbent material; and

✓ Mop the floor.

Mop water may be discharged to the sanitary sewer via a toilet or sink.

☐ Remove the adsorbent materials promptly and dispose of properly when using adsorbent materials on small spills.

Material Handling and Waste Management

☐ Designate a special area to drain and replace motor oil, coolant, and other fluids, where there are no connections to the storm drain or the sanitary sewer, and drips and spills can be easily cleaned up.

☐ Drain all fluids immediately from wrecked vehicles. Ensure that the drain pan or drip pan is large enough to contain drained fluids (e.g., larger pans are needed to contain antifreeze, which may gush from some vehicles).
Vehicle and Equipment Repair SC-22

- Do not pour liquid waste to floor drains, sinks, outdoor storm drain inlets, or other storm drains or sewer connections.
- Do not put used or leftover cleaning solutions, solvents, and automotive fluids and in the sanitary sewer.
- Collect leaking or dripping fluids in drip pans or containers. Fluids are easier to recycle if kept separate.
- Promptly transfer used fluids to the proper waste or recycling drums. Do not leave drip pans or other open containers lying around.
- Place oil filter in a funnel over a waste oil recycling drum to drain excess oil before disposal since municipalities prohibit or discourage disposal of these items in solid waste facilities.
- Oil filters can also be recycled. Ask your oil supplier or recycler about recycling oil filters. Oil filters disposed of in trashcans or dumpsters can leak oil and contaminate stormwater.
- Store cracked batteries in a non-leaking secondary container and dispose of properly at recycling or household hazardous waste facilities.

Employee Training Program

- Train employees and contractors in the proper handling and disposal of engine fluids and waste materials.
- Employees should have the tools and knowledge to immediately begin cleaning up a spill should one occur.
- Conduct annual training to ensure that employees are familiar with the facility’s spill control plan and/or proper spill cleanup procedures (You can use reusable cloth rags to clean up small drips and spills instead of disposables; these can be washed by a permitted industrial laundry. Do not clean them at home or at a coin-operated laundry business).
- Use a training log or similar method to document training.

Quality Assurance and Recordkeeping

- Keep accurate maintenance logs to evaluate materials removed and improvements made.
- Establish procedures to collect and file maintenance logs in the central office.
Other Facility-Specific Considerations

Parts Cleaning
Vehicle and equipment maintenance facilities often must clean parts as a part of day-today operations. The following activities should be considered:

☐ Clean vehicle parts without using liquid cleaners wherever possible to reduce waste.
☐ Steam cleaning and pressure washing may be used instead of solvent parts cleaning.
☐ Wastewater generated from steam cleaning must be discharged to an on-site oil water separator that is connected to a sanitary sewer or blind sump.
☐ Use non-caustic detergents instead of caustic cleaning agents, detergent-based or water-based cleaning systems in place of organic solvent degreasers, and non-chlorinated solvent in place of chlorinated organic solvents for parts cleaning. Refer to SC21 for more information on steam cleaning.

Potential Limitations and Work-Arounds

☐ Some facilities may have space constraints and time limitations that may preclude all work from being conducted indoors.
 ✓ Designate specific areas for outdoor activities.
 ✓ Require employees to understand and follow preventive maintenance and spill and leak prevention BMPs.
☐ It may not be possible to contain and clean up spills from vehicles/equipment brought on-site after working hours.
 ✓ Provide a designated area for afterhours deliveries.
 ✓ Install spill kits.
☐ Drain pans (usually 1 ft. x 1 ft.) are generally too small to contain antifreeze
 ✓ Purchase or fabricate large drip pans (3 ft. x 3 ft.) with sufficient volume to contain expected quantities of liquids based on equipment/vehicle specifications.
☐ Dry floor cleaning methods may not be sufficient for some spills.
 ✓ Use three-step method instead.
☐ Identification of engine leaks may require some use of solvents.
 ✓ Minimize the use of solvents and use drip pans to collect spills and leaks.
☐ Prices for recycled materials and fluids may be higher than those of non-recycled materials.
Some facilities may be limited by a lack of providers of recycled materials, and by the absence of businesses to provide services such as hazardous waste removal, structural treatment practice maintenance, or solvent equipment and solvent recycling.

Potential Facilities and Maintenance Requirements

Facilities Requirements

- For facilities that already have covered areas where maintenance takes place, have berms or other means to retain spills and leaks, and/ have other appropriate constructed systems for containment, there may not need to be any significant new capital investment. Capital costs will likely be required at some sites if adequate cover and containment facilities do not exist and can vary significantly depending upon site conditions.

Maintenance Requirements

- Most of the operations and maintenance activity associated with implementing this BMP are integrally linked to routine operations as previously described. Therefore, significant additional operations and maintenance efforts are not likely to be required.

- For facilities responsible for pre-treating their wastewater prior to discharging, the proper functioning of structural treatment system is an important maintenance consideration. Routine cleanout of oil and grease is required for the devices to maintain their effectiveness, usually at least once a month. During periods of heavy rainfall, cleanout is required more often to ensure pollutants are not washed through the trap. Sediment removal is also required on a regular basis to keep the device working efficiently.

- It is important to sweep the maintenance area weekly, if it is paved, to collect loose particles, and wipe up spills with rags and other absorbent material immediately. Do not hose down the area to a storm drain.

Supplemental Information

Waste Reduction

Parts are often cleaned using solvents such as trichloroethylene, 1,1,1-trichloroethane or methylene chloride. Many of these cleaners are harmful and must be disposed of as a hazardous waste. Cleaning without using liquid cleaners (e.g., wire brush) whenever possible reduces waste. Prevent spills and drips of solvents and cleansers to the shop floor. Do all liquid cleaning at a centralized station so the solvents and residues stay in one area. Locate drip pans, drain boards, and drying racks to direct drips back into a solvent sink or fluid holding tank for reuse. Reducing the number of solvents makes recycling easier and reduces hazardous waste management costs. Often, one solvent can perform a job as well as two different solvents.

- Clean parts without using liquid cleaners whenever possible to reduce waste.

- Prevent spills and drips of solvents and cleansers to the shop floor.
□ Do all liquid cleaning at a centralized station so the solvents and residues stay in one area.

□ Locate drip pans, drain boards, and drying racks to direct drips back into a solvent sink or fluid holding tank for reuse.

Recycling
Separating wastes allows for easier recycling and may reduce treatment costs. Keep hazardous and non-hazardous wastes separate, do not mix used oil and solvents, and keep chlorinated solvents (e.g., 1,1,1-trichloroethane) separate from non-chlorinated solvents (e.g., kerosene and mineral spirits).

Many products made of recycled (i.e., refined or purified) materials are available. Engine oil, transmission fluid, antifreeze, and hydraulic fluid are available in recycled form. Buying recycled products supports the market for recycled materials.

□ Recycling is always preferable to disposal of unwanted materials.

□ Separate wastes for easier recycling. Keep hazardous and non-hazardous wastes separate, do not mix used oil and solvents, and keep chlorinated solvents separate from non-chlorinated solvents.

□ Label and track the recycling of waste material (e.g., used oil, spent solvents, batteries).

□ Purchase recycled products to support the market for recycled materials.

Safer Alternatives
If possible, eliminate or reduce the amount of hazardous materials and waste by substituting non-hazardous or less hazardous material:

□ Use non-caustic detergents instead of caustic cleaning for parts cleaning.

□ Use detergent-based or water-based cleaning systems in place of organic solvent degreasers. Wash water may require treatment before it can be discharged to the sewer.

□ Replace chlorinated organic solvents with non-chlorinated solvents. Non-chlorinated solvents like kerosene or mineral spirits are less toxic and less expensive to dispose of properly. Check list of active ingredients to see whether it contains chlorinated solvents.

□ Choose cleaning agents that can be recycled.

References and Resources

Santa Clara Valley Urban Runoff Pollution Prevention Program http://www.scvurppp-w2k.com/.

Description
The loading/unloading of materials usually takes place outside on docks or terminals; therefore, materials spilled, leaked, or lost during loading/unloading may collect in the soil or on other surfaces and have the potential to be carried away by wind, stormwater runoff or when the area is cleaned. Additionally, rainfall may wash pollutants from machinery used to unload or move materials. Implementation of the following protocols will prevent or reduce the discharge of pollutants to stormwater from outdoor loading/unloading of materials.

Approach
Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols

- Park tank trucks or delivery vehicles in designated areas so that spills or leaks can be contained.
- Limit exposure of material to rainfall whenever possible.
- Prevent stormwater run-on.
- Check equipment regularly for leaks.

Good Housekeeping

- Develop an operations plan that describes procedures for loading and/or unloading.
- Conduct loading and unloading in dry weather if possible.
Outdoor Loading/Unloading

- Cover designated loading/unloading areas to reduce exposure of materials to rain.
- Consider placing a seal or door skirt between delivery vehicles and building to prevent exposure to rain.
- Design loading/unloading area to prevent stormwater run-on, which would include grading or berming the area, and position roof downspouts so they direct stormwater away from the loading/unloading areas.
- Have employees load and unload all materials and equipment in covered areas such as building overhangs at loading docks if feasible.
- Load/unload only at designated loading areas.
- Use drip pans underneath hose and pipe connections and other leak-prone spots during liquid transfer operations, and when making and breaking connections. Several drip pans should be stored in a covered location near the liquid transfer area so that they are always available, yet protected from precipitation when not in use. Drip pans can be made specifically for railroad tracks. Drip pans must be cleaned periodically, and drip collected materials must be disposed of properly.
- Pave loading areas with concrete instead of asphalt.
- Avoid placing storm drains inlets in the area.
- Grade and/or berm the loading/unloading area with drainage to sump; regularly remove materials accumulated in sump.

Spill Response and Prevention Procedures

- Keep your spill prevention and control plan up-to-date or have an emergency spill cleanup plan readily available, as applicable.
- Contain leaks during transfer.
- Store and maintain appropriate spill cleanup materials in a location that is readily accessible and known to all employees.
- Ensure that employees are familiar with the site’s spill control plan and proper spill cleanup procedures.
- Use drip pans or comparable devices when transferring oils, solvents, and paints.

Material Handling and Waste Management

- Spot clean leaks and drips routinely to prevent runoff of spillage.
- Do not pour liquid wastes into floor drains, sinks, outdoor storm drain inlets, or other storm drains or sewer connections.
Do not put used or leftover cleaning solutions, solvents, and automotive fluids in the storm drain or sanitary sewer.

Collect leaking or dripping fluids in drip pans or containers. Fluids are easier to recycle if kept separate.

Promptly transfer used fluids to the proper waste or recycling drums. Do not leave drip pans or other open containers lying around.

Minimize the possibility of stormwater pollution from outside waste receptacles by doing at least one of the following:

- Use only watertight waste receptacle(s) and keep the lid(s) closed.
- Grade and pave the waste receptacle area to prevent run-on of stormwater.
- Install a roof over the waste receptacle area.
- Install a low containment berm around the waste receptacle area.
- Use and maintain drip pans under waste receptacles.

Post “no littering” signs.

Perform work area clean-up and dry sweep after daily operations.

Employee Training Program

- Train employees (e.g., fork lift operators) and contractors on proper spill containment and cleanup.
- Have employees trained in spill containment and cleanup present during loading/unloading.
- Train employees in proper handling techniques during liquid transfers to avoid spills.
- Make sure forklift operators are properly trained on loading and unloading procedures.

Quality Assurance and Record Keeping

- Keep accurate maintenance logs that document activities performed, quantities of materials removed, and improvement actions.
- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.
- Establish procedures to complete logs and file them in the central office.
- Keep accurate logs of daily clean-up operations.
Potential Limitations and Work-Arounds
Some facilities may have space constraints, limited staffing and time limitations that may preclude implementation of BMPs. Provided below are typical limitations and recommended “work-arounds.”

- Space and time limitations may preclude all transfers from being performed indoors or under cover.
 - Designate specific areas for outdoor loading and unloading.
 - Require employees to understand and follow spill and leak prevention BMPs.
- It may not be possible to conduct transfers only during dry weather.
 - Limit materials and equipment rainfall exposure to all extents practicable.
 - Require employees to understand and follow spill and leak prevention BMPs.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities
Many facilities will already have indoor or covered areas where loading/unloading takes place and will require no additional capital expenditures.

If outdoor activities are required, construction of berms or other means to retain spills and leaks may require appropriate constructed systems for containment. These containment areas may require significant new capital investment.

Capital investments will likely be required at some sites if adequate cover and containment facilities do not exist and can vary significantly depending upon site conditions.

Maintenance
Most of the operations and maintenance activities associated with implementing this BMP are integrally linked to routine operations as previously described. Therefore additional O&M is not required.

- Conduct regular inspections and make repairs and improvements as necessary.
- Check loading and unloading equipment regularly for leaks.
- Conduct regular broom dry-sweeping of area. Do not wash with water.

Supplemental Information

Loading and Unloading of Liquids
- Loading or unloading of liquids should occur in the manufacturing building so that any spills that are not completely retained can be discharged to the sanitary sewer,
treatment plant, or treated in a manner consistent with local sewer authorities and permit requirements.

☐ For loading and unloading tank trucks to above and below ground storage tanks, the following procedures should be used:

✓ The area where the transfer takes place should be paved. If the liquid is reactive with the asphalt, Portland cement should be used to pave the area.

✓ The transfer area should be designed to prevent run-on of stormwater from adjacent areas. Sloping the pad and using a curb, like a speed bump, around the uphill side of the transfer area should reduce run-on.

✓ The transfer area should be designed to prevent runoff of spilled liquids from the area. Sloping the area to a drain should prevent runoff. The drain should be connected to a dead-end sump or to the sanitary sewer. A positive control valve should be installed on the drain.

☐ For transfer from rail cars to storage tanks that must occur outside, use the following procedures:

✓ Drip pans should be placed at locations where spillage may occur, such as hose connections, hose reels, and filler nozzles. Use drip pans when making and breaking connections.

✓ Drip pan systems should be installed between the rails to collect spillage from tank cars.

References and Resources

Sacramento Stormwater Management Program, *Best Management Practices for Industrial Storm Water Pollution Control*. Available online at:

Sacramento County Environmental Management Stormwater Program: *Best Management Practices*. Available online at:
http://www.emd.saccounty.net/EnvHealth/Stormwater/Stormwater-BMPs.html.

US EPA. National Pollutant Discharge Elimination System – Industrial Fact Sheet Series for Activities Covered by EPA’s Multi Sector General Permit. Available online at:
Description
Accidental releases of materials from above ground liquid storage tanks, drums, and dumpsters present the potential for contaminating stormwater with many different pollutants. Tanks may store many potential stormwater runoff pollutants, such as gasoline, aviation gas, diesel fuel, kerosene, oils, greases, lubricants and other distilled, blended and refined products derived from crude petroleum. Materials spilled, leaked, or lost from storage tanks may accumulate in soils or on other surfaces and be carried away by rainfall runoff. These source controls apply to containers located outside of a building used to temporarily store liquid materials and include installing safeguards against accidental releases, installing secondary containment, conducting regular inspections, and training employees in standard operating procedures and spill cleanup techniques.

Approach

General Pollution Prevention Protocols
- Educate employees about pollution prevention measures and goals.
- Keep an accurate, up-to-date inventory of the materials delivered and stored on-site.
- Try to keep chemicals in their original containers, and keep them well labeled.
- Develop an operations plan that describes procedures for loading and/or unloading. Refer to SC-30 Outdoor Loading/Unloading of Materials for more detailed BMP information pertaining to loading and unloading of liquids.
- Protect materials from rainfall, run-on, runoff, and wind dispersal:
 - Cover the storage area with a roof.

Objectives
- Cover
- Contain
- Educate
- Reduce/Minimize

Targeted Constituents

Sediment	✔
Nutrients	✔
Trash	✔
Metals	✔
Bacteria	✔
Oil and Grease	✔
Organics	✔

Minimum BMPs Covered

- Good Housekeeping ✔
- Preventative Maintenance ✔
- Spill and Leak Prevention and Response ✔
- Material Handling & Waste Management ✔
- Erosion and Sediment Controls ✔
- Employee Training Program ✔
- Quality Assurance Record Keeping ✔
Minimize stormwater run-on by enclosing the area or building a berm around it.

Use a walled structure for storage of liquid containers.

Use only watertight containers and keep the lids closed.

Employ safeguards against accidental releases:

- Provide overflow protection devices to warn operator or automatic shutdown transfer pumps.
- Provide protection guards (bollards) around tanks and piping to prevent damage from a vehicle or forklift.
- Provide clear tagging or labeling, and restrict access to valves to reduce human error.
- Berm or surround tank or container with secondary containment system, including dikes, liners, vaults, or double walled tanks.
- Be aware and ready to address the fact that some municipalities require secondary containment areas to be connected to the sanitary sewer, prohibiting any hard connections to the storm drain.
- Contact the appropriate regulatory agency regarding environmental compliance for facilities with “spill ponds” designed to intercept, treat, and/or divert spills.
- Have registered and specifically trained professional engineers identify and correct potential problems such as loose fittings, poor welding, and improper or poorly fitted gaskets for newly installed tank systems.

Use MSDSs to ID hazardous components and keep incompatible products apart and to list/have available appropriate PPE and clean-up products.

Good Housekeeping

- Provide storage tank piping located below product level with a shut-off valve at the tank; ideally this valve should be an automatic shear valve with the shut-off located inside the tank.
- Provide barriers such as posts or guardrails, where tanks are exposed, to prevent collision damage with vehicles.
- Provide secure storage to prevent vandalism-caused contamination.
- Place tight-fitting lids on containers.
Outdoor Liquid Container Storage

- Enclose or cover the containers where they are stored.
- Raise the containers off the ground by use of pallet or similar method, with provisions for spill control.
- Do not store liquid containers near the storm drainage system or surface waters.
- Sweep and clean the storage area regularly if it is paved, do not hose down the area to a storm drain.

Preventative Maintenance

- Inspect storage areas regularly for leaks or spills.
- Conduct routine inspections and check for external corrosion of material containers. Also check for structural failure, spills and overfills due to operator error, failure of piping system.
- Check for leaks or spills during pumping of liquids or gases from truck or rail car to a storage facility or vice versa.
- Visually inspect new tank or container installations for loose fittings, poor welding, and improper or poorly fitted gaskets.
- Inspect tank foundations, connections, coatings, and tank walls and piping system. Look for corrosion, leaks, cracks, scratches, and other physical damage that may weaken the tank or container system.
- Replace containers that are leaking, corroded, or otherwise deteriorating with ones in good condition. If the liquid chemicals are corrosive, containers made of compatible materials must be used instead of metal drums.
- New or secondary containers must be labeled with the product name and hazards.

Spill Response and Prevention Procedures

- Keep your spill prevention and control plan up-to-date.
- Maintain an adequate stockpile of spill cleanup materials at locations where it will be readily accessible.
- Have an emergency plan, equipment, and trained personnel ready at all times to deal immediately with major spills.
- Collect spilled liquids and properly dispose of them.
- Remove the adsorbent materials promptly and dispose of properly when using adsorbent materials on small spills.
- Have employees trained in emergency spill cleanup procedures present when dangerous waste, liquid chemicals, or other wastes are delivered.
Prevent operator errors by using engineering safeguards and thus reducing accidental releases of pollutants.

Material Handling and Waste Management

- Contain the material in such a manner that if the container leaks or spills, the contents will not discharge, flow, or be washed into the storm drainage system, surface waters or groundwater.

- Place drip pans or absorbent materials beneath mounted container taps, and at potential drip and spill locations during filling and unloading of containers. Any collected liquids or soiled absorbent materials must be reused/recycled or properly disposed.

- Ensure that any underground or aboveground storage tanks are designed and managed in accordance with applicable regulations, identified as a potential pollution source, and have secondary containment such as a berm or dike with an impervious surface.

- Do not pour liquids into floor drains, sinks, outdoor storm drain inlets, or other storm drains or sewer connections.

- Collect leaking or dripping fluids in drip pans or containers. Fluids are easier to recycle if kept separate.

- Promptly transfer used fluids to the proper waste or recycling drums. Do not leave drip pans or other open containers lying around.

Employee Training Program

- Train employee (e.g., fork lift operators) and contractors in proper spill containment and cleanup. The employee should have the tools and knowledge to immediately begin cleaning up a spill if one should occur.

- Train employees in proper spill response and prevention, materials handling, and waste management.

- Use a training log or similar method to document training.

Quality Assurance and Record Keeping

- Keep accurate maintenance/inspection logs that document minimum BMP activities performed for liquid container storage and improvement actions.

- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.

- Establish procedures to complete logs and file them in the central office.

Other Facility-Specific Considerations

- Storage sheds often must meet building and fire code requirements.
The local fire district must be consulted for limitations on clearance of roof covers over containers used to store flammable materials.

All specific standards set by Federal and State laws concerning the storage of oil and hazardous materials must be met.

Storage of reactive, ignitable, or flammable liquids should comply with the Uniform Fire Code and the National Electric Code.

Storage of oil and hazardous materials must meet specific Federal and State standards including:

- Spill Prevention Control and Countermeasure Plan (SPCC) Plan;
- Secondary containment;
- Integrity and leak detection monitoring; and
- Emergency preparedness plans.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Capital investments such as sheds, covers, dikes, and curbs will likely be required at some sites if adequate cover and containment facilities do not exist and can vary significantly depending upon site conditions.

Maintenance

- Most of the operations and maintenance activities associated with implementing this BMP are integrally linked to routine operations as previously described. Therefore additional O&M is not required.

- Conduct regular inspections and make repairs and improvements as necessary.

- Conduct regular broom dry-sweeping of area. Do not wash with water.

Supplemental Information

The most common causes of unintentional releases are:

- Installation problems;
- Failure of piping systems (pipes, pumps, flanges, couplings, hoses, and valves);
- External corrosion and structural failure;
- Spills and overfills due to operator error; and
- Leaks during pumping of liquids or gases from truck or rail car to a storage tank or vice versa.
Outdoor Liquid Container Storage

Aboveground Tank Leak and Spill Control

Storage of reactive, ignitable, or flammable liquids should comply with the Uniform Fire Code and the National Electric Code. Practices listed below should be employed to enhance the code requirements:

- Tanks should be placed in a designated area.
- Tanks located in areas where firearms are discharged should be encapsulated in concrete or the equivalent.
- Designated areas should be paved with Portland cement concrete, free of cracks and gaps, and impervious in order to contain leaks and spills.
- Liquid materials should be stored in UL approved double walled tanks or surrounded by a curb or dike to provide the volume to contain 10% of the volume of the containers or 110% of the volume of the largest container, whichever is greater. The area inside the curb should slope to a drain.
- For used oil or dangerous waste, a dead-end sump should be installed in the drain.
- Other liquids should be drained to the sanitary sewer if available. The drain must have a positive control such as a lock, valve, or plug to prevent release of contaminated liquids.
- Accumulated stormwater in petroleum storage areas should be passed through an oil/water separator.

Maintenance is critical to preventing leaks and spills. Conduct routine weekly inspections and:

- Check for external corrosion and structural failure.
- Check for spills and overfills due to operator error.
- Check for failure of piping system (pipes, pumps, flanger, coupling, hoses, and valves).
- Check for leaks or spills during pumping of liquids or gases from truck or rail car to a storage facility or vice versa.
- Inspect new tank or container installation visually for loose fittings, poor welding, and improper or poorly fitted gaskets.
- Inspect tank foundations, connections, coatings, and tank walls and piping system. Look for corrosion, leaks, cracks, scratches, and other physical damage that may weaken the tank or container system.
- Frequently release accumulated stormwater during the wet season.
- Have periodic integrity testing conducted by a qualified professional.
Dikes

One of the best protective measures against contamination of stormwater is the use of dikes. Containment dikes are berms or retaining walls that are designed to hold spills. Use of dikes is an effective pollution prevention measure for above ground storage tanks and railcar or tank truck loading and unloading areas. The dike surrounds the area of concern and holds the spill, keeping spill materials separated from the stormwater side of the dike area. Diking can be used in any industrial or municipal facility, but it is most commonly used for controlling large spills or releases from liquid storage areas and liquid transfer areas.

- For single-wall tanks, containment dikes should be large enough to hold the contents of the storage tank for the facility plus rain water.
- For trucks, diked areas should be capable of holding an amount equal to the volume of the tank truck compartment. Diked construction material should be strong enough to safely hold spilled materials.
- Dike materials can consist of earth, concrete, synthetic materials, metal, or other impervious materials.
- Strong acids or bases may react with metal containers, concrete, and some plastics.
- Where strong acids or bases or stored, alternative dike materials should be considered. More active organic chemicals may need certain special liners for dikes.
- Dikes may also be designed with impermeable materials to increase containment capabilities.
- Dikes should be inspected during or after significant storms or spills to check for washouts or overflows.
- Regular checks of containment dikes to insure the dikes are capable of holding spills should be conducted.
- Inability of a structure to retain stormwater, dike erosion, soggy areas, or changes in vegetation indicate problems with dike structures. Damaged areas should be patched and stabilized immediately.
- Earthen dikes may require special maintenance of vegetation such as mulching and irrigation.
- Remove accumulated stormwater after precipitation events and dispose of according to local regulations.

Curbing

Curbing is a barrier that surrounds an area of concern. Curbing is similar to containment diking in the way that it prevents spills and leaks from being released into the environment. Curbing is usually small scaled and does not contain large spills to the degree that dikes can. Curbing is common at many facilities in small areas where
Outdoor Liquid Container Storage

handling and transfer of liquid materials occur. Curbing can redirect contaminated stormwater away from the storage area. It is useful in areas where liquid materials are transferred from one container to another. Asphalt is a common material used for curbing; however, curbing materials can include earth, concrete, synthetic materials, metal, or other impenetrable materials.

- Spilled materials should be removed immediately from curbed areas to allow space for future spills.
- Curbs should have manually-controlled pump systems rather than common drainage systems for collection of spilled materials.
- The curbed area should be inspected regularly to clear clogging debris.
- Maintenance should also be conducted frequently to prevent overflow of any spilled materials as curbed areas are designed only for smaller spills.
- Remove accumulated stormwater after precipitation events and dispose of according to local regulations.
- Curbing has the following advantages:
 - Excellent run-on control;
 - Inexpensive;
 - Ease of installment;
 - Provides option to recycle materials spilled in curb areas; and
 - Common industry practice.

References and Resources

Description

Outside process equipment operations and maintenance can contaminate stormwater runoff. Activities, such as grinding, painting, coating, sanding, degreasing or parts cleaning, landfills and waste piles, and solid waste treatment and disposal are examples of process operations that can lead to contamination of stormwater runoff. The targeted constituents will vary for each site depending on the operation being performed.

Approach

Implement source control BMPs to limit exposure of outdoor equipment to direct precipitation and stormwater run-on. Refer to SC-22 Vehicle and Equipment Repair for additional information.

General Pollution Prevention Protocols

- Perform the activity during dry periods whenever possible.
- Install secondary containment measures where leaks and spills may occur.
- Use non-toxic chemicals for maintenance and minimize or eliminate the use of solvents.
- Connect process equipment area to public sanitary sewer or facility wastewater treatment system when possible. Some jurisdictions require that secondary containment areas be connected to the sanitary sewer, prohibiting any hard connections to the storm drain.

Good Housekeeping

- Manage materials and waste properly (see Material Handling and Waste Management) to reduce adverse impacts on stormwater quality.

Objectives

- Cover
- Contain
- Educate
- Reduce/Minimize

Targeted Constituents

- Sediment ✓
- Nutrients ✓
- Trash ✓
- Metals ✓
- Bacteria ✓
- Oil and Grease ✓
- Organics ✓

Minimum BMPs Covered

- Good Housekeeping ✓
- Preventative Maintenance ✓
- Spill and Leak Prevention and Response ✓
- Material Handling & Waste Management ✓
- Erosion and Sediment Controls ✓
- Employee Training Program ✓
- Quality Assurance Record Keeping ✓
Cover the work area with a permanent roof if possible.

Use drop cloths for sanding and painting operations.

Use a vacuum for fine particle clean-up in pavement cracks and crevices.

Minimize contact of stormwater with outside process equipment operations through berming and drainage routing (run-on prevention).

"Spot clean" leaks and drips routinely. Leaks are not cleaned up until the absorbent is picked up and disposed of properly.

Paint signs on storm drain inlets to indicate that they are not to receive liquid or solid wastes.

Use roll down or permanent walls when windy/breezy to prevent wind transport of particulates/pollutants.

Preventative Maintenance

Design outdoor equipment areas to prevent stormwater runoff and spills. Use a perimeter drain or slope pavement inward with drainage to sump.

Dry clean the work area regularly. Do not wash outdoor equipment with water if there is a direct connection to the storm drain.

Pave area with concrete rather than asphalt.

Inspect outdoor equipment regularly for leaks or spills. Also check for structural failure, spills and overfills due to operator error, and/or failure of piping system.

Inspect and clean, if necessary, storm drain inlets and catch basins within the outdoor equipment area before October 1 each year.

Spill Response and Prevention Procedures

Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.

Have employees trained in emergency spill cleanup procedures present when dangerous waste, liquid chemicals, or other wastes are delivered.

Place a stockpile of spill cleanup materials where it will be readily accessible.

Prevent operator errors by using engineering safe guards and thus reducing accidental releases of pollutant.

Material Handling and Waste Management
Outdoor Equipment Operations SC-32

- Do not pour liquid wastes into floor drains, sinks, outdoor storm drain inlets, or other storm drain or sewer connections.

- Collect leaking or dripping fluids in drip pans or containers. Fluids are easier to recycle if kept separate.

- Promptly transfer used fluids to the proper waste or recycling drums. Do not leave drip pans or other open containers lying around.

- Minimize the possibility of stormwater pollution from outside waste receptacles by doing at least one of the following:
 - Use only watertight waste receptacle(s) and keep the lid(s) closed.
 - Grade and pave the waste receptacle area to prevent run-on of stormwater.
 - Install a roof over the waste receptacle area.

Employee Training Program

- Educate employees about pollution prevention measures and goals.

- Train employees on proper equipment operation and maintenance procedures.

- Train all employees upon hiring and annually thereafter on proper methods for handling and disposing of waste. Ensure that all employees understand stormwater discharge prohibitions, wastewater discharge requirements, and these best management practices.

- Use a training log or similar method to document training.

- Ensure that employees are familiar with the site’s spill control plan and/or proper spill cleanup procedures.

Quality Assurance and Record Keeping

- Keep accurate maintenance logs that document minimum BMP activities performed for outdoor equipment, types and quantities of materials removed and disposed of, and any improvement actions.

- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.

- Establish procedures to complete logs and file them in the central office.

Potential Limitations and Work-Arounds

Some facilities may have space constraints, limited staffing and time limitations that may preclude implementation of BMPs. Provided below are typical limitations and recommended “work-arounds.”
Providing cover over outdoor equipment may be impractical or cost-prohibitive.

- Operate outdoor equipment only during periods of dry weather.

Regular operations and time limitations may require outdoor activities during wet weather.

- Designate specific areas for outdoor activities.
- Allow time for work area clean-up after each shift.
- Require employees to understand and follow preventive maintenance and spill and leak prevention BMPs.
- Design and install secondary containment and good housekeeping BMPs for outdoor equipment area.

Storage sheds often must meet building and fire code requirements.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Many facilities will already have indoor covered areas where vehicle and equipment repairs take place and will require no additional capital expenditures.
- If outdoor activities are required, construction of berms or other means to retain spills and leaks may require appropriate constructed systems for containment. These containment areas may require significant new capital investment.
- Capital investments will likely be required at some sites if adequate cover and containment facilities do not exist and can vary significantly depending upon site conditions.

Maintenance

- Most of the operations and maintenance activities associated with implementing this BMP are integrally linked to routine operations as previously described. Therefore additional O&M is not required.
- For facilities responsible for pre-treating their wastewater prior to discharging, the proper functioning of structural treatment system is an important maintenance consideration.
- Routine cleanout of oil and grease is required for the devices to maintain their effectiveness, usually at least once a month. During periods of heavy rainfall, cleanout is required more often to ensure pollutants are not washed through the trap. Sediment removal is also required on a regular basis to keep the device working efficiently.
References and Resources

Outdoor Storage of Raw Materials SC-33

Description
Stockpiles of raw materials, by-products, and finished products exposed to rain and/or runoff can pollute stormwater. Stormwater can become contaminated when materials wash off or dissolve into water due to improper storage and containment. To prevent or reduce the discharge of pollutants to stormwater from raw material delivery and storage, pollution prevention and source control measures must be implemented, such as minimizing the storage of hazardous materials on-site, enclosing or covering materials, storing materials in a designated area, installing secondary containment, conducting regular inspections, preventing stormwater run-on and runoff, and training employees and subcontractors. This fact sheet focuses on source control BMPs for stockpiles of solid materials; if the raw material, by-product, or product is a liquid, more information for outside storage of liquids can be found under SC-31 Outdoor Liquid Container Storage.

Approach
Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols

☐ Emphasize employee education for successful BMP implementation.

☐ Store materials that could contaminate stormwater inside or under permanent cover. If this is not feasible, then all outside storage areas should be covered with a roof and bermed or enclosed to prevent stormwater contact.

☐ Elevate and tarp solid materials such as beams, metal, etc.

☐ Minimize the inventory of raw materials kept outside.

Objectives
- Cover
- Contain
- Educate
- Reduce/Minimize

Targeted Constituents
- Sediment ✓
- Nutrients ✓
- Trash
- Metals ✓
- Bacteria
- Oil and Grease ✓
- Organics ✓

Minimum BMPs Covered
- Good Housekeeping ✓
- Preventative Maintenance ✓
- Spill and Leak Prevention and Response ✓
- Material Handling & Waste Management
- Erosion and Sediment Controls ✓
- Employee Training Program ✓
- Quality Assurance Record Keeping ✓
Keep an accurate, up-to-date inventory of the materials delivered and stored on-site.

Stormwater runoff that could potentially be contaminated by materials stored outdoors should be drained to the sanitary sewer if available. The drain must have a positive control such as a lock, valve, or plug to prevent release of contaminated liquids.

Good Housekeeping

- If raw materials cannot all be stored inside or under permanent cover, prevent exposure to direct precipitation and stormwater run-on by installing a storm-resistant waterproof covering made of polyethylene, polypropylene or hypalon over all materials stored outside. The covers must be in place at all times when work with the stockpiles is not occurring (Applicable to small stockpiles only).

- Implement erosion control practices at the perimeter of the facility site and at any catch basins to prevent erosion of the stockpiled material off-site, if the stockpiles are so large that they cannot feasibly be covered and contained.

- Minimize stormwater run-on by enclosing the area or building a berm around it.

- Keep storage areas clean and dry.

- Slope paved areas in a manner that minimizes pooling of water on the site, particularly with materials that may leach pollutants into stormwater and/or groundwater, such as compost, logs, and wood chips. A minimum slope of 1.5% is recommended.

- Secure drums stored in an area where unauthorized persons may not gain access to prevent accidental spillage, pilferage, or any unauthorized use.

- Install curbing or berms along the perimeter of the area to prevent the run-on of uncontaminated stormwater from adjacent areas as well as runoff of stormwater from the stockpile areas.

- Slope the area inside the curb or berm to a drain with sump. The sump should be equipped with an oil and water separator if applicable for materials stored onsite.

- Do not store materials on top of or directly adjacent to storm drain inlets.

- Cover wood products treated with chromated copper arsenate, ammonical copper zinc arsenate, creosote, or pentachlorophenol with properly secured tarps or store indoors.

Preventative Maintenance

- Maintain outdoor storage containers in good condition. Replace leaky or otherwise inadequate containers as necessary.

- Maintain outdoor waterproof covers (e.g., tarps) in good condition and properly secure them to be storm resistant. Replace tarps damaged by UV exposure or wear and tear on a regular basis.
Outdoor Storage of Raw Materials SC-33

- Perform routine inspection of storm drains and sumps and regularly remove accumulated materials.
- Dry clean the work area regularly. Do not wash outdoor material storage areas with water if there is a direct connection to the storm drain.
- Pave outdoor storage areas for liquids such as solvents with concrete rather than asphalt.
- Conduct regular inspections of storage areas so that leaks and spills are detected as soon as possible.
- Routinely inspect berms, curbing, containment, and sediment controls for proper function and repair as necessary.

Spill and Leak Prevention and Response

- Keep the facility spill prevention and control plan up-to-date.
- Place a stockpile of spill cleanup materials, such as brooms, dustpans, and vacuum sweepers (if desired) near the storage area where it will be readily accessible.
- Have employees trained in spill containment and cleanup present during the loading/unloading of hazardous or otherwise dangerous materials.

Erosion and Sediment Controls

- Keep materials covered to prevent erosion of stockpiles. This may not be feasible for large stockpiles.
- Install sediment controls such as fiber rolls around the perimeter of stockpiles to prevent transport of raw materials to the storm drain.
- Install drain inlet protection around all inlets to prevent raw materials from entering storm drain.
- Install sediment controls such as silt fence around the perimeter of the site to prevent transport of raw materials to the storm drain or offsite surface waters.

Employee Training Program

- Educate employees about pollution prevention measures and goals.
- Train employees how to properly store outdoor raw materials using the source control BMPs described above.
- Use a training log or similar method to document training.
- Ensure that employees are familiar with the site’s spill control plan and/or proper spill cleanup procedures.
Quality Assurance and Record Keeping

- Keep accurate maintenance logs that document minimum BMP activities performed for outdoor storage of raw materials, types and quantities of materials removed and disposed of, and any improvement actions.

- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.

- Establish procedures to complete logs and file them in the central office.

Other Facility-Specific Considerations

- Storage sheds often must meet building and fire code requirements. Storage of reactive, ignitable, or flammable liquids must comply with the Uniform Fire Code and the National Electric Code.

- Some municipalities require that secondary containment areas (regardless of size) be connected to the sanitary sewer, prohibiting any hard connections to the storm drain.

- The local fire district must be consulted for limitations on clearance of roof covers over containers used to store flammable materials.

Potential Limitations and Work-Arounds

Some facilities may have space constraints, limited staffing and time limitations that may preclude implementation of BMPs. Provided below are typical limitations and recommended “work-arounds”

- Space limitations may preclude storing all materials indoors.
 - Implement good housekeeping, preventative maintenance, and erosion and sediment controls as described above.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Many facilities will already have indoor covered areas where raw materials will be stored and will require no additional capital expenditures.

- If outdoor storage of materials is required, construction of berms or other means to prevent stormwater run-on and runoff may require appropriate constructed systems for containment. These containment areas may require significant new capital investment.

- Purchase and installation of erosion and sediment controls will require additional capital investments, and this amount will vary depending on site characteristics.

- Capital investments will likely be required at some sites if adequate cover and containment facilities do not exist and can vary significantly depending upon site conditions.
Outdoor Storage of Raw Materials SC-33

Maintenance

☐ Accurate and up-to-date inventories should be kept of all stored materials.

☐ Berms and curbs may require periodic repair and patching.

☐ Parking lots or other surfaces near bulk materials storage areas should be swept periodically to remove debris blown or washed from storage areas.

☐ Sweep paved storage areas regularly for collection and disposal of loose solid materials, do not hose down the area to a storm drain or conveyance ditch.

☐ Erosion and sediment controls require regular inspection and periodic replacement or reinstallation.

Supplemental Information

Raw Material Containment

Paved areas should be sloped in a manner that minimizes pooling of water on the site, particularly with materials that may leach pollutants into stormwater and/or groundwater, such as compost, logs, and wood chips. A minimum slope of 1.5% is recommended.

☐ Curbing or berms should be placed along the perimeter of the area to prevent the run-on of uncontaminated stormwater from adjacent areas as well as runoff of stormwater from stockpile areas.

☐ The storm drainage system should be designed to minimize use of catch basins in the interior of the area as they tend to rapidly fill with manufacturing material.

The area should be sloped to drain stormwater to the perimeter where it can be collected or to internal drainage alleyways where material is not stockpiled.

The “doghouse” design has been used to store small liquid containers. The roof and flooring design prevent contact with direct rain or runoff. The doghouse has two solid structural walls and two canvas covered walls. The flooring is wire mesh about secondary containment.

References and Resources

Description
Improper storage and handling of solid wastes can allow toxic compounds, oils and greases, heavy metals, nutrients, suspended solids, and other pollutants to enter stormwater runoff. The discharge of pollutants to stormwater from waste handling and disposal can be prevented and reduced by tracking waste generation, storage, and disposal; reducing waste generation and disposal through source reduction, reuse, and recycling; and preventing run-on and runoff.

Approach
Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols
- Accomplish reduction in the amount of waste generated using the following source controls:
 - Production planning and sequencing;
 - Process or equipment modification;
 - Raw material substitution or elimination;
 - Loss prevention and housekeeping;
 - Waste segregation and separation; and
 - Close loop recycling.
- Establish a material tracking system to increase awareness about material usage. This may reduce spills and minimize contamination, thus reducing the amount of waste produced.
- Recycle materials whenever possible.

Objectives
- **Cover**
- **Contain**
- **Educate**
- **Reduce/Minimize**
- **Product Substitution**

Targeted Constituents
- *Sediment*
- *Nutrients*
- *Trash*
- *Metals* ✓
- *Bacteria* ✓
- *Oil and Grease* ✓
- *Organics* ✓

Minimum BMPs Covered
- **Good Housekeeping** ✓
 - **Preventative Maintenance** ✓
 - **Spill and Leak Prevention and Response** ✓
 - **Material Handling & Waste Management** ✓
 - **Erosion and Sediment Controls**
 - **Employee Training Program** ✓
 - **Quality Assurance Record Keeping** ✓
Waste Handling & Disposal

☐ Use the entire product before disposing of the container.

☐ To the extent possible, store wastes under cover or indoors after ensuring all safety concerns such as fire hazard and ventilation are addressed.

☐ Provide containers for each waste stream at each work station. Allow time after shift to clean area.

Good Housekeeping

☐ Cover storage containers with leak proof lids or some other means. If waste is not in containers, cover all waste piles (plastic tarps are acceptable coverage) and prevent stormwater run-on and runoff with a berm. The waste containers or piles must be covered except when in use.

☐ Use drip pans or absorbent materials whenever grease containers are emptied by vacuum trucks or other means. Grease cannot be left on the ground. Collected grease must be properly disposed of as garbage.

☐ Dispose of rinse and wash water from cleaning waste containers into a sanitary sewer if allowed by the local sewer authority. Do not discharge wash water to the street or storm drain. Clean in a designated wash area that drains to a clarifier.

☐ Transfer waste from damaged containers into safe containers.

☐ Take special care when loading or unloading wastes to minimize losses. Loading systems can be used to minimize spills and fugitive emission losses such as dust or mist. Vacuum transfer systems can minimize waste loss.

☐ Keep the waste management area clean at all times by sweeping and cleaning up spills immediately.

☐ Use dry methods when possible (e.g., sweeping, use of absorbents) when cleaning around restaurant/food handling dumpster areas. If water must be used after sweeping/using absorbents, collect water and discharge through grease interceptor to the sewer.

☐ Stencil or demarcate storm drains on the facility’s property with prohibitive message regarding waste disposal.

☐ Cover waste piles with temporary covering material such as reinforced tarpaulin, polyethylene, polyurethane, polypropylene or hypalon.

☐ If possible, move the activity indoor after ensuring all safety concerns such as fire hazard and ventilation are addressed.

Preventative Maintenance

☐ Prevent stormwater run-on from entering the waste management area by enclosing the area or building a berm around the area.

☐ Prevent waste materials from directly contacting rain.
Cover waste piles with temporary covering material such as reinforced tarpaulin, polyethylene, polyurethane, polypropylene or hypalon.

Cover the area with a permanent roof if feasible.

Cover dumpsters to prevent rain from washing waste out of holes or cracks in the bottom of the dumpster.

Check waste containers weekly for leaks and to ensure that lids are on tightly. Replace any that are leaking, corroded, or otherwise deteriorating.

Cover the area with a permanent roof if feasible.

Cover dumpsters to prevent rain from washing waste out of holes or cracks in the bottom of the dumpster.

Check waste containers weekly for leaks and to ensure that lids are on tightly. Replace any that are leaking, corroded, or otherwise deteriorating.

Sweep and clean the waste management area regularly. Use dry methods when possible (e.g., sweeping, vacuuming, use of absorbents) when cleaning around restaurant/food handling dumpster areas. If water must be used after sweeping/using absorbents, collect water and discharge through grease interceptor to the sewer.

Inspect and replace faulty pumps or hoses regularly to minimize the potential of releases and spills.

Repair leaking equipment including valves, lines, seals, or pumps promptly.

Spill Response and Prevention Procedures

Keep your spill prevention and plan up-to-date.

Have an emergency plan, equipment and trained personnel ready at all times to deal immediately with major spills.

Collect all spilled liquids and properly dispose of them.

Store and maintain appropriate spill cleanup materials in a location known to all near the designated wash area.

Ensure that vehicles transporting waste have spill prevention equipment that can prevent spills during transport. Spill prevention equipment includes:

- Vehicles equipped with baffles for liquid waste; and
- Trucks with sealed gates and spill guards for solid waste.

Material Handling and Waste Management

Litter Control

Post “No Littering” signs and enforce anti-litter laws.

Provide a sufficient number of litter receptacles for the facility.

Clean out and cover litter receptacles frequently to prevent spillage.

Waste Collection

Keep waste collection areas clean.
Inspect solid waste containers for structural damage regularly. Repair or replace damaged containers as necessary.

Secure solid waste containers; containers must be closed tightly when not in use.

Do not fill waste containers with washout water or any other liquid.

Ensure that only appropriate solid wastes are added to the solid waste container. Certain wastes such as hazardous wastes, appliances, fluorescent lamps, pesticides, etc., may not be disposed of in solid waste containers (see chemical/hazardous waste collection section below).

Do not mix wastes; this can cause chemical reactions, make recycling impossible, and complicate disposal. Affix labels to all waste containers.

Chemical/Hazardous Wastes

- Select designated hazardous waste collection areas on-site.
- Store hazardous materials and wastes in covered containers and protect them from vandalism.
- Place hazardous waste containers in secondary containment.
- Make sure that hazardous waste is collected, removed, and disposed of only at authorized disposal areas.
- Hazardous waste cannot be reused or recycled; it must be disposed of by a licensed hazardous waste hauler.

Employee Training Program

- Educate employees about pollution prevention measures and goals.
- Train employees how to properly handle and dispose of waste using the source control BMPs described above.
- Train employees and subcontractors in proper hazardous waste management.
- Use a training log or similar method to document training.
- Ensure that employees are familiar with the site’s spill control plan and/or proper spill cleanup procedures.

Quality Assurance and Record Keeping

- Keep accurate maintenance logs that document minimum BMP activities performed for waste handling and disposal, types and quantities of waste disposed of, and any improvement actions.
- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.
Establish procedures to complete logs and file them in the central office.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Capital costs will vary substantially depending on the size of the facility and the types of waste handled. Significant capital costs may be associated with reducing wastes by modifying processes or implementing closed-loop recycling.

- Many facilities will already have indoor covered areas where waste materials will be stored and will require no additional capital expenditures for providing cover.

- If outdoor storage of wastes is required, construction of berms or other means to prevent stormwater run-on and runoff may require appropriate constructed systems for containment.

- Capital investments will likely be required at some sites if adequate cover and containment facilities do not exist and can vary significantly depending upon site conditions.

Maintenance

- Check waste containers weekly for leaks and to ensure that lids are on tightly. Replace any that are leaking, corroded, or otherwise deteriorating.

- Sweep and clean the waste management area regularly. Use dry methods when possible (e.g., sweeping, use of absorbents) when cleaning around restaurant/food handling dumpster areas. If water must be used after sweeping/using absorbents, collect water and discharge through grease interceptor to the sewer.

- Inspect and replace faulty pumps or hoses regularly to minimize the potential of releases and spills.

- Repair leaking equipment including valves, lines, seals, or pumps promptly.

References and Resources

Santa Clara Valley Urban Runoff Pollution Prevention Program. http://www.scvurppp-w2k.com/

Description
Promote the use of less harmful products and products that contain little or no TMDL and 303(d) list pollutants. Alternatives exist for most product classes including chemical fertilizers, pesticides, cleaning solutions, janitorial chemicals, automotive and paint products, and consumables (batteries, fluorescent lamps).

Approach
Pattern a new program after the many established programs around the state and country. Integrate this best management practice as much as possible with existing programs at your facility.

Develop a comprehensive program based on:

- The “Precautionary Principle,” which is an alternative to the “Risk Assessment” model that says it’s acceptable to use a potentially harmful product until physical evidence of its harmful effects are established and deemed too costly from an environmental or public health perspective. For instance, a risk assessment approach might say it’s acceptable to use a pesticide until there is direct proof of an environmental impact. The Precautionary Principle approach is used to evaluate whether a given product is safe, whether it is really necessary, and whether alternative products would perform just as well.

- Environmentally Preferable Purchasing Program to minimize the purchase of products containing hazardous ingredients used in the facility's custodial services, fleet maintenance, and facility maintenance in favor of using alternate products that pose less risk to employees and to the environment.

- Integrated Pest Management (IPM) or Less-Toxic Pesticide Program, which uses a pest management approach that minimizes the use of toxic chemicals and gets rid of pests.

Objectives
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents
- Sediment
- Nutrients ✓
- Trash
- Metals ✓
- Bacteria
- Oil and Grease ✓
- Organics ✓

Minimum BMPs Covered
- Good Housekeeping
- Preventative Maintenance
- Spill and Leak Prevention and Response
- Material Handling & Waste Management
- Erosion and Sediment Controls
- Employee Training Program ✓
- Quality Assurance Record Keeping
Safer Alternative Products

by methods that pose a lower risk to employees, the public, and the environment.

- Energy Efficiency Program including no-cost and low-cost energy conservation and efficiency actions that can reduce both energy consumption and electricity bills, along with long-term energy efficiency investments.

Consider the following mechanisms for developing and implementing a comprehensive program:

- Policies
- Procedures
 - Standard operating procedures (SOPs);
 - Purchasing guidelines and procedures; and
 - Bid packages (services and supplies).
- Materials
 - Preferred or approved product and supplier lists;
 - Product and supplier evaluation criteria;
 - Training sessions and manuals; and
 - Fact sheets for employees.

Implement this BMP in conjunction with the Vehicle and Equipment Management fact sheets (SC-20 – SC-22) and SC-41 Building and Grounds Maintenance.

Employee Training Program

- Employees who handle potentially harmful materials should be trained in the use of safer alternatives.

- Purchasing departments should be trained on safer alternative products and encouraged to procure less hazardous materials and products that contain little or no harmful substances or TMDL pollutants.

- Employees and contractors / service providers can both be educated about safer alternatives by using information developed by a number of organizations including the references and resources provided in this fact sheet.

Potential Limitations and Work-Arounds

Some facilities may have space constraints, limited staffing and time limitations that may preclude implementation of BMPs. Provided below are typical limitations and recommended “work-arounds”

- Alternative products may not be available, suitable, or effective in every case.
Minimize use of hazardous/harmful products if no alternative product is available.

Regulatory Considerations

This BMP has no regulatory requirements unless local/municipal ordinance applies. Existing regulations already encourage facilities to reduce the use of hazardous materials through incentives such as reduced:

- Specialized equipment storage and handling requirements;
- Storm water runoff sampling requirements;
- Training and licensing requirements; and
- Record keeping and reporting requirements.

Cost Considerations

- The primary cost is for staff time to: 1) develop new policies and procedures and 2) educate purchasing departments and employees who handle potentially harmful materials about the availability, procurement, and use of safer alternatives.
- Some alternative products may be slightly more expensive than conventional products.

Supplemental Information

The following discussion provides some general information on safer alternatives. More specific information on particular hazardous materials and the available alternatives may be found in the references and resources listed below.

- Automotive products – Less toxic alternatives are not available for many automotive products, especially engine fluids. But there are alternatives to grease lubricants, car polishes, degreasers, and windshield washer solution. Refined motor oil is also available.

- Vehicle/Trailer lubrication – Fifth wheel bearings on trucks require routine lubrication. Adhesive lubricants are available to replace typical chassis grease.

- Cleaners – Vegetables-based or citrus-based soaps are available to replace petroleum-based soaps/detergents.

- Paint products – Water-based paints, wood preservatives, stains, and finishes with low VOC content are available.

- Pesticides – Specific alternative products or methods exist to control most insects, fungi, and weeds.

- Chemical Fertilizers – Compost and soil amendments are natural alternatives.

- Consumables – Manufacturers have either reduced or are in the process of reducing the amount of heavy metals in consumables such as batteries and fluorescent lamps.
All fluorescent lamps contain mercury, however low-mercury containing lamps are now available from most hardware and lighting stores. Fluorescent lamps are also more energy efficient than the average incandescent lamp.

- Janitorial chemicals – Even biodegradable soap can harm fish and wildlife before it biodegrades. Biodegradable does not mean non-toxic. Safer products and procedures are available for floor stripping and cleaning, as well as carpet, glass, metal, and restroom cleaning and disinfecting. Use paper products with post-consumer recycled content and implement electric hand dryers.

Examples

There are a number of business and trade associations, and communities with effective programs. Some of the more prominent are listed below in the references and resources section.

References and Resources

Note: Many of these references provide alternative products for materials that typically are used inside and disposed to the sanitary sewer as well as alternatives to products that usually end up in the storm drain.

General Sustainable Practices and Pollution Prevention Including Pollutant-Specific Information

California Department of Toxic Substances Control, http://www.dtsc.ca.gov/PollutionPrevention/GreenTechnology/Index.cfm.

City of Santa Monica Office of Sustainability and Environment, http://www.smgov.net/departments/ose/.

Metals (mercury, copper)

 Auto Recycling Project

 Brake Pad Partnership

Pesticides and Chemical Fertilizers

Dioxins
Bay Area Dioxins Project,
Contaminated or Erodible Areas SC-40

Description
Areas within an industrial site that are bare of vegetation or are subject to activities that promote the suppression of vegetation are often subject to erosion. In addition, they may or may not be contaminated from past or current activities. If the area is temporarily bare because of construction, see SC-42 Building Repair, Remodeling, and Construction. Sites with excessive erosion or the potential for excessive erosion should consider employing the soil erosion BMPs identified in the Construction BMP Handbook. Note that this fact sheet addresses soils that do not exceed hazardous waste criteria (see Title 22 California Code of Regulations for Hazardous Waste Criteria).

Approach
Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols
Implement erosion and sediment control BMPs to stabilize soils and reduce pollutant discharges from contaminated or erodible surfaces.

Erosion and Sediment Controls
- Preserve natural vegetation whenever possible. See also EC-2 Preservation of Existing Vegetation, in the Construction BMP Handbook.
- Analyze soil conditions.
- Remove contaminated soil and dispose of properly.
- Stabilize loose soils by re-vegetating whenever possible. See also EC-4 Hydroseeding, in the Construction BMP Handbook.

Objectives
- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents

<table>
<thead>
<tr>
<th>Constituent</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediment</td>
<td>✓</td>
</tr>
<tr>
<td>Nutrients</td>
<td>✓</td>
</tr>
<tr>
<td>Trash</td>
<td>✓</td>
</tr>
<tr>
<td>Metals</td>
<td>✓</td>
</tr>
<tr>
<td>Bacteria</td>
<td>✓</td>
</tr>
<tr>
<td>Oil and Grease</td>
<td>✓</td>
</tr>
<tr>
<td>Organics</td>
<td>✓</td>
</tr>
</tbody>
</table>

Minimum BMPs Covered
- Good Housekeeping
- Preventative Maintenance
- Spill and Leak Prevention and
- Material Handling & Waste Management
- Erosion and Sediment Controls ✓
- Employee Training Program ✓
- Quality Assurance Record Keeping ✓
Utilize non-vegetative stabilization methods for areas prone to erosion where vegetative options are not feasible. Examples include:

- Areas of vehicular or pedestrian traffic such as roads or paths;
- Arid environments where vegetation would not provide timely ground coverage, or would require excessive irrigation;
- Rocky substrate, infertile or droughty soils where vegetation would be difficult to establish; and
- Areas where vegetation will not grow adequately within the construction time frame.

There are several non-vegetative stabilization methods and selection should be based on site-specific conditions. See also EC-16 Non-Vegetative Stabilization, in the Construction BMP Handbook.

Utilize chemical stabilization when needed. See also EC-5 Soil Binders, in the Construction BMP Handbook.

Use geosynthetic membranes to control erosion if feasible. See also EC-7 Geotextiles and Mats, in the Construction BMP Handbook.

Stabilize all roadways, entrances, and exits to sufficiently control discharges of erodible materials from discharging or being tracked off the site. See also TC 1-3 Tracking Control, in the Construction BMP Handbook.

Implement wind erosion control measures as necessary. See also WE-1 Wind Erosion Control, in the Construction BMP Handbook.

Employee Training Program

- Educate employees about pollution prevention measures and goals.
- Train employees how to properly install and maintain the erosion and sediment source control BMPs described above. Detailed information is provided in the Construction BMP Handbook.
- Use a training log or similar method to document training.

Quality Assurance and Record Keeping

- Keep accurate logs that document actions taken to maintain and improve the effectiveness of the erosion and sediment control BMPs described above.
- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.
- Establish procedures to complete logs and file them in the central office.
Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities
- Many facilities do not have contaminated or erodible areas and will require no additional capital expenditures.
- For sites with contaminated or erodible areas, purchase and installation of erosion and sediment controls will require additional capital investments, and this amount will vary depending on site characteristics and the types of BMPs being implemented.
- Minimize costs by maintaining existing vegetation and limiting site operations on bare soils.

Maintenance
- The erosion and sediment control BMPs described above require periodic inspection and maintenance to remain effective. The cost of these actions will vary depending on site characteristics and the types of BMPs being implemented.
- Irrigation costs may be required to establish and maintain vegetation.

Supplemental Information

Stabilization of Erodible Areas
Preserving stabilized areas minimizes erosion potential, protects water quality, and provides aesthetic benefits. The most effective way to control erosion is to preserve existing vegetation. Preservation of natural vegetation provides a natural buffer zone and an opportunity for infiltration of stormwater and capture of pollutants in the soil matrix. This practice can be used as a permanent source control measure.

Vegetation preservation should be incorporated into the site. Preservation requires good site management to minimize operations on bare soils where vegetation exists. Proper maintenance is important to ensure healthy vegetation that can control erosion. Different species, soil types, and climatic conditions will require different maintenance activities such as mulching, fertilizing, liming, irrigation, pruning and weed and pest control.

The preferred approach is to leave as much native vegetation on-site as possible, thereby reducing or eliminating any erosion problem. However, assuming the site already has contaminated or erodible surface areas, there are four possible courses of action which can be taken:

- The area can be revegetated if it is not in use and therefore not subject to damage from site activities. In as much as the area is already devoid of vegetation, special measures are likely necessary. Lack of vegetation may be due to the lack of water and/or poor soils. The latter can perhaps be solved with fertilization, or the ground may simply be too compacted from prior use. Improving soil conditions may be sufficient to support the recovery of vegetation. Use process wastewater for irrigation if possible, and see the Construction BMP Handbook for further procedures on establishing vegetation.
Contaminated or Erodible Areas SC-40

- Watering trucks to prevent dust.

- Chemical stabilization can be used as an alternate method in areas where temporary seeding practices cannot be used because of season or climate. It can provide immediate, effective, and inexpensive erosion control. Application rates and procedures recommended by the manufacturer should be followed as closely as possible to prevent the products from forming ponds and creating large areas where moisture cannot penetrate the soil. See also EC-5, Soil Binders, in the Construction BMP Handbook for more information. Advantages of chemical stabilization include:

 ✓ Applied easily to the surface;
 ✓ Stabilizes areas effectively; and
 ✓ Provides immediate protection to soils that are in danger of erosion.

- Contaminated soils should be cleaned up or removed. This requires determination of the level and extent of the contamination. Removal must comply with State and Federal regulations; permits must be acquired and fees paid.

- Non-vegetated stabilization methods are suitable for permanently protecting from erosion by water and wind. Non-vegetated stabilization should only be utilized when vegetation cannot be established due to soil or climactic conditions, or where vegetation may be a potential fire hazard.

Examples of non-vegetative stabilization BMPs are provided below:

 ✓ **Decomposed Granite (DG) and Gravel Mulch** are suitable for use in areas where vegetation establishment is difficult, on flat surfaces, trails and pathways, and when used in conjunction with a stabilizer or tackifier, on shallow slopes (i.e., 10:1 [H:V]). DG and gravel can also be used on shallow rocky slopes where vegetation cannot be established for permanent erosion control.

 ✓ **Degradable Mulches** can be used to cover and protect soil surfaces from erosion both in temporary and permanent applications. In many cases, the use of mulches by themselves requires routine inspection and re-application. See EC-3 Hydraulic Mulch, EC-6 Straw Mulch, EC-8 Wood Mulch, or EC-14 Compost Blankets of the Construction BMP Handbook for more information.

 ✓ **Geotextiles and Mats** can be used as a temporary stand-alone soil stabilization method. Depending on material selection, geotextiles and mats can be a short-term (3 months – 1 year) or long-term (1-2 years) temporary stabilization method. For more information on geotextiles and mats see EC-7 Geotextiles and Mats of the Construction BMP Handbook.

 ✓ **Rock Slope Protection** can be used when the slopes are subject to scour or have a high erosion potential, such as slopes adjacent to flowing waterways or slopes subject to overflow from detention facilities (spillways).
Soil Binders can be used for temporary stabilization of stockpiles and disturbed areas not subject to heavy traffic. See EC-5 Soil Binders for more information.

References and Resources

Description
Stormwater runoff from building and grounds maintenance activities can be contaminated with toxic hydrocarbons in solvents, fertilizers and pesticides, suspended solids, heavy metals, abnormal pH, and oils and greases. Utilizing the protocols in this fact sheet will prevent or reduce the discharge of pollutants to stormwater from building and grounds maintenance activities by washing and cleaning up with as little water as possible, following good landscape management practices, preventing and cleaning up spills immediately, keeping debris from entering the storm drains, and maintaining the stormwater collection system.

Approach
Reduce potential for pollutant discharge through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols
- Switch to non-toxic chemicals for maintenance to the maximum extent possible.
- Choose cleaning agents that can be recycled.
- Encourage proper lawn management and landscaping, including use of native vegetation.
- Encourage use of Integrated Pest Management techniques for pest control.
- Encourage proper onsite recycling of yard trimmings.
- Recycle residual paints, solvents, lumber, and other material as much as possible.

Objectives
- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents
- Sediment ✓
- Nutrients ✓
- Trash
- Metals ✓
- Bacteria ✓
- Oil and Grease
- Organics

Minimum BMPs Covered
- Good Housekeeping ✓
- Preventative Maintenance
- Spill and Leak Prevention and Response ✓
- Material Handling & Waste Management ✓
- Erosion and Sediment Controls
- Employee Training Program ✓
- Quality Assurance Record Keeping ✓
Building & Grounds Maintenance SC-41

- Clean work areas at the end of each work shift using dry cleaning methods such as sweeping and vacuuming.

Good Housekeeping

Pressure Washing of Buildings, Rooftops, and Other Large Objects

- In situations where soaps or detergents are used and the surrounding area is paved, pressure washers must use a water collection device that enables collection of wash water and associated solids. A sump pump, wet vacuum or similarly effective device must be used to collect the runoff and loose materials. The collected runoff and solids must be disposed of properly.

- If soaps or detergents are not used, and the surrounding area is paved, wash runoff does not have to be collected but must be screened. Pressure washers must use filter fabric or some other type of screen on the ground and/or in the catch basin to trap the particles in wash water runoff.

- If you are pressure washing on a grassed area (with or without soap), runoff must be dispersed as sheet flow as much as possible, rather than as a concentrated stream. The wash runoff must remain on the grass and not drain to pavement.

Landscaping Activities

- Dispose of grass clippings, leaves, sticks, or other collected vegetation as garbage, or by composting. Do not dispose of collected vegetation into waterways or storm drainage systems.

- Use mulch or other erosion control measures on exposed soils. See also SC-40, Contaminated and Erodible Areas, for more information.

Building Repair, Remodeling, and Construction

- Do not dump any toxic substance or liquid waste on the pavement, the ground, or toward a storm drain.

- Use ground or drop cloths underneath outdoor painting, scraping, and sandblasting work, and properly dispose of collected material daily.

- Use a ground cloth or oversized tub for activities such as paint mixing and tool cleaning.

- Clean paintbrushes and tools covered with water-based paints in sinks connected to sanitary sewers or in portable containers that can be dumped into a sanitary sewer drain. Brushes and tools covered with non-water-based paints, finishes, or other materials must be cleaned in a manner that enables collection of used solvents (e.g., paint thinner, turpentine, etc.) for recycling or proper disposal.

- Use a storm drain cover, filter fabric, or similarly effective runoff control mechanism if dust, grit, wash water, or other pollutants may escape the work area and enter a catch basin. This is particularly necessary on rainy days. The containment device(s) must be in place at the beginning of the work day, and accumulated dirty runoff and
solids must be collected and disposed of before removing the containment device(s) at the end of the work day.

- If you need to de-water an excavation site, you may need to filter the water before discharging to a catch basin or off-site. If directed off-site, you should direct the water through hay bales and filter fabric or use other sediment filters or traps.

- Store toxic material under cover during precipitation events and when not in use. A cover would include tarps or other temporary cover material.

Mowing, Trimming, and Planting

- Dispose of leaves, sticks, or other collected vegetation as garbage, by composting or at a permitted landfill. Do not dispose of collected vegetation into waterways or storm drainage systems.

- Use mulch or other erosion control measures when soils are exposed.

- Place temporarily stockpiled material away from watercourses and drain inlets, and berm or cover stockpiles to prevent material releases to the storm drain system.

- Consider an alternative approach when bailing out muddy water: do not put it in the storm drain; pour over landscaped areas.

- Use hand weeding where practical.

Fertilizer and Pesticide Management

- Do not use pesticides if rain is expected.

- Do not mix or prepare pesticides for application near storm drains.

- Use the minimum amount needed for the job.

- Calibrate fertilizer distributors to avoid excessive application.

- Employ techniques to minimize off-target application (e.g., spray drift) of pesticides, including consideration of alternative application techniques.

- Apply pesticides only when wind speeds are low.

- Fertilizers should be worked into the soil rather than dumped or broadcast onto the surface.

- Irrigate slowly to prevent runoff and then only as much as is needed.

- Clean pavement and sidewalk if fertilizer is spilled on these surfaces before applying irrigation water.

Inspection

- Inspect irrigation system periodically to ensure that the right amount of water is being applied and that excessive runoff is not occurring. Minimize excess watering and repair leaks in the irrigation system as soon as they are observed.
Spill Response and Prevention Procedures

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.
- Place a stockpile of spill cleanup materials, such as brooms, dustpans, and vacuum sweepers (if desired) near the storage area where it will be readily accessible.
- Have employees trained in spill containment and cleanup present during the loading/unloading of dangerous wastes, liquid chemicals, or other materials.
- Familiarize employees with the Spill Prevention Control and Countermeasure Plan.
- Clean up spills immediately.

Material Handling and Waste Management

- Follow all federal, state, and local laws and regulations governing the use, storage, and disposal of fertilizers and pesticides and training of applicators and pest control advisors.
- Use less toxic pesticides that will do the job when applicable. Avoid use of copper-based pesticides if possible.
- Dispose of empty pesticide containers according to the instructions on the container label.
- Use up the pesticides. Rinse containers, and use rinse water as product. Dispose of unused pesticide as hazardous waste.
- Implement storage requirements for pesticide products with guidance from the local fire department and County Agricultural Commissioner. Provide secondary containment for pesticides.

Employee Training Program

- Educate and train employees on pesticide use and in pesticide application techniques to prevent pollution.
- Train employees and contractors in proper techniques for spill containment and cleanup.
- Be sure the frequency of training takes into account the complexity of the operations and the needs of individual staff.

Quality Assurance and Record Keeping

- Keep accurate logs that document maintenance activities performed and minimum BMP measures implemented.
- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.
- Establish procedures to complete logs and file them in the central office.
Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

☐ Additional capital costs are not anticipated for building and grounds maintenance. Implementation of the minimum BMPs described above should be conducted as part of regular site operations.

Maintenance

☐ Maintenance activities for the BMPs described above will be minimal, and no additional cost is anticipated.

Supplemental Information

Fire Sprinkler Line Flushing

Site fire sprinkler line flushing may be a source of non-stormwater runoff pollution. The water entering the system is usually potable water, though in some areas it may be non-potable reclaimed wastewater. There are subsequent factors that may drastically reduce the quality of the water in such systems. Black iron pipe is usually used since it is cheaper than potable piping, but it is subject to rusting and results in lower quality water. Initially, the black iron pipe has an oil coating to protect it from rusting between manufacture and installation; this will contaminate the water from the first flush but not from subsequent flushes. Nitrates, poly-phosphates and other corrosion inhibitors, as well as fire suppressants and antifreeze may be added to the sprinkler water system. Water generally remains in the sprinkler system a long time (typically a year) and between flushes may accumulate iron, manganese, lead, copper, nickel, and zinc. The water generally becomes anoxic and contains living and dead bacteria and breakdown products from chlorination. This may result in a significant BOD problem and the water often smells. Consequently dispose fire sprinkler line flush water into the sanitary sewer. Do not allow discharge to storm drain or infiltration due to potential high levels of pollutants in fire sprinkler line water.

References and Resources

Sacramento Stormwater Management Program. Best Management Practices for Industrial Storm Water Pollution Control. Available online at:

Description

Site modifications are common, particularly at large industrial sites. The activity may vary from minor and normal building repair to major remodeling, or the construction of new facilities. These activities can generate pollutants including solvents, paints, paint and varnish removers, finishing residues, spent thinners, soap cleaners, kerosene, asphalt and concrete materials, adhesive residues, and old asbestos installation. Protocols in this fact sheet are intended to prevent or reduce the discharge of pollutants to stormwater from building repair, remodeling, and minor construction by using soil erosion controls, enclosing or covering building material storage areas, using good housekeeping practices, using safer alternative products, and training employees.

This fact sheet is intended to be used for minor repairs and construction. If major construction is required, the guidelines in the Construction BMP Handbook should be followed.

Approach

The BMP approach is to reduce potential for pollutant discharges through source control pollution prevention and BMP implementation. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols

- Recycle residual paints, solvents, lumber, and other materials to the maximum extent practicable.
- Avoid outdoor repairs and construction during periods of wet weather.
- Use safer alternative products to the maximum extent practicable. See also SC-35 Safer Alternative Products for more information.
Buy recycled products to the maximum extent practicable.

Inform on-site contractors of company policy on these matters and include appropriate provisions in their contract to ensure certain proper housekeeping and disposal practices are implemented.

Make sure that nearby storm drains are well marked to minimize the chance of inadvertent disposal of residual paints and other liquids.

Good Housekeeping

Repair & Remodeling

- Keep the work site clean and orderly. Remove debris in a timely fashion. Sweep and vacuum the area regularly to remove sediments and small debris.

- Cover raw materials of particular concern that must be left outside, particularly during the rainy season. See also SC-33 Outdoor Storage of Raw Materials for more information.

- Use equipment and tools such as bag sanders to reduce accumulation of debris.

- Limit/prohibit work on windy days; implement roll-down walls or other measures to reduce wind transport of pollutants.

- Do not dump waste liquids down the storm drain.

- Dispose of wash water, sweepings, and sediments properly.

- Store liquid materials properly that are normally used in repair and remodeling such as paints and solvents. See also SC-31 Outdoor Liquid Container Storage for more information.

- Sweep out rain gutters or wash the gutter and trap the particles at the outlet of the downspout. A sock or geofabric placed over the outlet may effectively trap the materials. If the downspout is tight lined, place a temporary plug at the first convenient point in the storm drain and pump out the water with a vactor truck, and clean the catch basin sump where you placed the plug.

- Clean the storm drain system in the immediate vicinity of the construction activity after it is completed. See also SC-44 Drainage System Maintenance for more information.

Painting

- Enclose painting operations consistent with local air quality regulations and OSHA.

- Local air pollution regulations may, in many areas of the state, specify painting procedures which if properly carried out are usually sufficient to protect water quality.

- Develop paint handling procedures for proper use, storage, and disposal of paints.
Transport paint and materials to and from job sites in containers with secure lids and tied down to the transport vehicle.

Test and inspect spray equipment prior to starting to paint. Tighten all hoses and connections and do not overfill paint containers.

Mix paint indoors before using so that any spill will not be exposed to rain. Do so even during dry weather because cleanup of a spill will never be 100 percent effective.

Transfer and load paint and hot thermoplastic away from storm drain inlets.

Do not transfer or load paint near storm drain inlets.

Plug nearby storm drain inlets prior to starting painting and remove plugs when job is complete when there is risk of a spill reaching storm drains.

Cover nearby storm drain inlets prior to starting work if sand blasting is used to remove paint.

Use a ground cloth to collect the chips if painting requires scraping or sand blasting of the existing surface. Dispose of the residue properly.

Cover or enclose painting operations properly to avoid drift.

Clean the application equipment in a sink that is connected to the sanitary sewer if using water based paints.

Capture all cleanup-water and dispose of properly.

Dispose of paints containing lead or tributyl tin and considered a hazardous waste properly.

Store leftover paints if they are to be kept for the next job properly, or dispose properly.

Recycle paint when possible. Dispose of paint at an appropriate household hazardous waste facility.

Spill Response and Prevention Procedures

Keep your spill prevention and control plan up-to-date.

Place a stockpile of spill cleanup materials where it will be readily accessible.

Clean up spills immediately.

Excavate and remove the contaminated (stained) soil if a spill occurs on dirt.

Material Handling and Waste Management

Post “No Littering” signs and enforce anti-litter laws.
Provide a sufficient number of litter receptacles for the facility.

Clean out and cover litter receptacles frequently to prevent spillage.

Keep waste collection areas clean.

Inspect solid waste containers for structural damage regularly. Repair or replace damaged containers as necessary.

Secure solid waste containers; containers must be closed tightly when not in use.

Do not fill waste containers with washout water or any other liquid.

Ensure that only appropriate solid wastes are added to the solid waste container. Certain wastes such as hazardous wastes, appliances, fluorescent lamps, pesticides, etc., may not be disposed of in solid waste containers (see chemical/hazardous waste collection section below).

Do not mix wastes; this can cause chemical reactions, make recycling impossible, and complicate disposal. Affix labels to all waste containers.

Make sure that hazardous waste is collected, removed, and disposed of properly. See also SC-34, Waste Handling and Disposal for more information.

Sediment and Erosion Controls

Limit disturbance to bare soils and preserve natural vegetation whenever possible. See also EC-2, Preservation of Existing Vegetation, in the Construction BMP Handbook.

Stabilize loose soils by re-vegetating whenever possible. See also EC-4 Hydroseeding, in the Construction BMP Handbook.

Utilize non-vegetative stabilization methods for areas prone to erosion where vegetative options are not feasible. Examples include:

- Areas of vehicular or pedestrian traffic such as roads or paths;
- Arid environments where vegetation would not provide timely ground coverage, or would require excessive irrigation;
- Rocky substrate, infertile or droughty soils where vegetation would be difficult to establish; and
- Areas where vegetation will not grow adequately within the construction time frame.

There are several non-vegetative stabilization methods and selection should be based on site-specific conditions. See also EC-16 Non-Vegetative Stabilization, in the Construction BMP Handbook.
Utilize chemical stabilization when needed. See also EC-5 Soil Binders, in the Construction BMP Handbook.

Use geosynthetic membranes to control erosion if feasible. See also EC-7 Geotextiles and Mats, in the Construction BMP Handbook.

Stabilize all roadways, entrances, and exits to sufficiently control discharges of erodible materials from discharging or being tracked off the site. See also TC 1-3 Tracking Control, in the Construction BMP Handbook.

Refer to the supplemental information provided below for projects that involve more extensive soil disturbance activities.

Employee Training Program

- Educate employees about pollution prevention measures and goals.

- Train employees how to properly implement the source control BMPs described above. Detailed information for Sediment and Erosion Control BMPs is provided in the Construction BMP Handbook.

- Proper education of off-site contractors is often overlooked. The conscientious efforts of well trained employees can be lost by unknowing off-site contractors, so make sure they are well informed about pollutant source control responsibilities.

- Use a training log or similar method to document training.

Quality Assurance and Record Keeping

- Keep accurate maintenance logs that document minimum BMP activities performed for building repair and construction, types and quantities of waste disposed of, and any improvement actions.

- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.

- Establish procedures to complete logs and file them in the central office.

Potential Limitations and Work-Arounds

Some facilities may have space constraints, limited staffing and time limitations that may preclude implementation of BMPs. Provided below are typical limitations and recommended “work-arounds.”

- This BMP is for minor construction only. The State’s General Construction Activity Stormwater Permit has more extensive requirements for larger projects that would disturb one or more acres of surface.

 Refer to the companion “Construction Best Management Practice Handbook” which contains specific guidance and best management practices for larger-scale projects.
Time constraints may require some outdoor repairs and construction during wet weather.

- Require employees to understand and follow good housekeeping and spill and leak prevention BMPs.
- Inspect sediment and erosion control BMPs daily during periods of wet weather and repair or improve BMP implementation as necessary.

Hazardous waste that cannot be reused or recycled must be disposed of by a licensed hazardous waste hauler.

- Minimize use of hazardous materials to the maximum extent practicable.

Be certain that actions to help stormwater quality are consistent with Cal- and Fed-OSHA and air quality regulations.

Prices for recycled/safer alternative materials and fluids may be higher than those of conventional materials.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Limited capital investments may be required at some sites if adequate cover and containment facilities do not exist for construction materials and wastes.

- Purchase and installation of erosion and sediment controls, if needed will require additional capital investments, and this amount will vary depending on site characteristics and the types of BMPs being implemented.

- Minimize costs by maintaining existing vegetation and limiting construction operations on bare soils.

Maintenance

- The erosion and sediment control BMPs described above require periodic inspection and maintenance to remain effective. The cost of these actions will vary depending on site characteristics and the types of BMPs being implemented.

- Irrigation costs may be required to establish and maintain vegetation.

Supplemental Information

Soil/Erosion Control

If the work involves exposing large areas of soil, employ the appropriate soil erosion and control techniques. See the Construction Best Management Practice Handbook. If old buildings are being torn down and not replaced in the near future, stabilize the site using measures described in SC-40 Contaminated or Erodible Areas.
If a building is to be placed over an open area with a storm drainage system, make sure the storm inlets within the building are covered or removed, or the storm line is connected to the sanitary sewer. If because of the remodeling a new drainage system is to be installed or the existing system is to be modified, consider installing catch basins as they serve as effective “in-line” treatment devices. Include in the catch basin a “turn-down” elbow or similar device to trap floatables.

References and Resources

Parking Area Maintenance

Description
Parking lots can contribute a number of substances, such as trash, suspended solids, hydrocarbons, oil and grease, and heavy metals that can enter receiving waters through stormwater runoff or non-stormwater discharges. The protocols in this fact sheet are intended to prevent or reduce the discharge of pollutants from parking areas and include using good housekeeping practices, following appropriate cleaning BMPs, and training employees.

BMPs for other outdoor areas on site (loading/unloading, material storage, and equipment operations) are described in SC-30 through SC-33.

Approach
The goal of this program is to ensure stormwater pollution prevention practices are considered when conducting activities on or around parking areas to reduce potential for pollutant discharge to receiving waters. Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols
- Encourage advanced designs and maintenance strategies for impervious parking lots. Refer to the treatment control BMP fact sheets in this manual for additional information.
- Keep accurate maintenance logs to evaluate BMP implementation.

Good Housekeeping
- Keep all parking areas clean and orderly. Remove debris, litter, and sediments in a timely fashion.
- Post “No Littering” signs and enforce anti-litter laws.

Objectives
- Cover
- Contain
- Educate
- Reduce/Minimize
- Product Substitution

Targeted Constituents
- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Minimum BMPs Covered
- Good Housekeeping
- Preventative Maintenance
- Spill and Leak Prevention and Response
- Material Handling & Waste Management
- Erosion and Sediment Controls
- Employee Training Program
- Quality Assurance Record Keeping
Provide an adequate number of litter receptacles.

Clean out and cover litter receptacles frequently to prevent spillage.

Preventative Maintenance

Inspection

Have designated personnel conduct inspections of parking facilities and stormwater conveyance systems associated with parking facilities on a regular basis.

- Inspect cleaning equipment/sweepers for leaks on a regular basis.

Surface Cleaning

- Use dry cleaning methods (e.g., sweeping, vacuuming) to prevent the discharge of pollutants into the stormwater conveyance system if possible.

- Establish frequency of public parking lot sweeping based on usage and field observations of waste accumulation.

- Sweep all parking lots at least once before the onset of the wet season.

- Dispose of parking lot sweeping debris and dirt at a landfill.

- Follow the procedures below if water is used to clean surfaces:
 - Block the storm drain or contain runoff.
 - Collect and pump wash water to the sanitary sewer or discharge to a pervious surface. Do not allow wash water to enter storm drains.

- Follow the procedures below when cleaning heavy oily deposits:
 - Clean oily spots with absorbent materials.
 - Use a screen or filter fabric over inlet, then wash surfaces.
 - Do not allow discharges to the storm drain.
 - Vacuum/pump discharges to a tank or discharge to sanitary sewer.
 - Dispose of spilled materials and absorbents appropriately.

Surface Repair

- Check local ordinance for SUSMP/LID ordinance.

- Preheat, transfer or load hot bituminous material away from storm drain inlets.

- Apply concrete, asphalt, and seal coat during dry weather to prevent contamination from contacting stormwater runoff.

- Cover and seal nearby storm drain inlets where applicable (with waterproof material or mesh) and manholes before applying seal coat, slurry seal, etc. Leave covers in
Parking Area Maintenance

- Place until job is complete and all water from emulsified oil sealants has drained or evaporated. Clean any debris from these covered manholes and drains for proper disposal.

- Use only as much water as necessary for dust control during sweeping to avoid runoff.

- Catch drips from paving equipment that is not in use with pans or absorbent material placed under the machines. Dispose of collected material and absorbents properly.

Spill Response and Prevention Procedures

- Keep your Spill Prevention Control and Countermeasure (SPCC) Plan up-to-date.

- Place a stockpile of spill cleanup materials where it will be readily accessible or at a central location.

- Clean up fluid spills immediately with absorbent rags or material.

- Dispose of spilled material and absorbents properly.

Employee Training Program

- Provide regular training to field employees and/or contractors regarding cleaning of paved areas and proper operation of equipment.

- Train employees and contractors in proper techniques for spill containment and cleanup.

- Use a training log or similar method to document training.

Quality Assurance and Record Keeping

- Keep accurate maintenance logs that document minimum BMP activities performed for parking area maintenance, types and quantities of waste disposed of, and any improvement actions.

- Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.

- Establish procedures to complete logs and file them in the central office.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Capital investments may be required at some sites to purchase sweeping equipment, train sweeper operators, install oil/water/sand separators, or implement advanced BMPs. These costs can vary significantly depending upon site conditions and the amount of BMPs required.
Parking Area Maintenance

Maintenance

☐ Sweep and clean parking lots regularly to minimize pollutant transport into storm drains from stormwater runoff.

☐ Clean out oil/water/sand separators regularly, especially after heavy storms.

☐ Maintain advanced BMPs such as vegetated swales, infiltration trenches, or detention basins as appropriate. Refer to the treatment control fact sheets for more information.

Supplemental Information

Advanced BMPs

Some parking areas may require advanced BMPs to further reduce pollutants in stormwater runoff, and a few examples are listed below. Refer to the Treatment Control Fact Sheets and the New Development and Redevelopment Manual for more information.

☐ When possible, direct sheet runoff to flow into biofilters (vegetated strip and swale) and/or infiltration devices.

☐ Utilize sand filters or oleophilic collectors for oily waste in low quantities.

☐ Arrange rooftop drains to prevent drainage directly onto paved surfaces.

☐ Design lot to include semi-permeable hardscape.

References and Resources

Description
As a consequence of its function, the stormwater drainage facilities on site convey stormwater that may contain certain pollutants either to the offsite conveyance system that collects and transports urban runoff and stormwater, or directly to receiving waters. The protocols in this fact sheet are intended to reduce pollutants leaving the site to the offsite drainage infrastructure or to receiving waters through proper on-site conveyance system operation and maintenance. The targeted constituents will vary depending on site characteristics and operations.

Approach
Successful implementation depends on effective training of employees on applicable BMPs and general pollution prevention strategies and objectives.

General Pollution Prevention Protocols
- Maintain catch basins, stormwater inlets, and other stormwater conveyance structures on a regular basis to remove pollutants, reduce high pollutant concentrations during the first flush of storms, prevent clogging of the downstream conveyance system, restore catch basins’ sediment trapping capacity, and ensure the system functions properly hydraulically to avoid flooding.

- Develop and follow a site specific drainage system maintenance plan that describes maintenance locations, methods, required equipment, water sources, sediment collection areas, disposal requirements, and any other pertinent information.

Good Housekeeping
Illicit Connections and Discharges
- Look for evidence of illegal discharges or illicit connections during routine maintenance of conveyance system and drainage structures:

Objectives
- Cover
- Contain
- Educate
- Reduce/Minimize

Targeted Constituents
- Sediment
- Nutrients
- Trash
- Metals
- Bacteria
- Oil and Grease
- Organics

Minimum BMPs Covered
- Good Housekeeping
- Preventative Maintenance
- Spill and Leak Prevention and Response
- Material Handling & Waste Management
- Erosion and Sediment Controls
- Employee Training Program
- Quality Assurance Record Keeping
Identify evidence of spills such as paints, discoloring, odors, etc.

Record locations of apparent illegal discharges/illicit connections.

Track flows back to potential discharges and conduct aboveground inspections. This can be done through visual inspection of upgradient manholes or alternate techniques including zinc chloride smoke testing, fluorometric dye testing, physical inspection testing, or television camera inspection.

Eliminate the discharge once the origin of flow is established.

Stencil or demarcate storm drains, where applicable, to prevent illegal disposal of pollutants. Storm drain inlets should have messages such as “Dump No Waste Drains to Stream” or similar stenciled next to them to warn against ignorant or intentional dumping of pollutants into the storm drainage system.

Refer to fact sheet SC-10 Non-Stormwater Discharges for additional information.

Illegal Dumping

Inspect and clean up hot spots and other storm drainage areas regularly where illegal dumping and disposal occurs.

Establish a system for tracking incidents. The system should be designed to identify the following:

- Illegal dumping hot spots;
- Types and quantities (in some cases) of wastes;
- Patterns in time of occurrence (time of day/night, month, or year);
- Mode of dumping (abandoned containers, “midnight dumping” from moving vehicles, direct dumping of materials, accidents/spills); and
- Responsible parties.

Post “No Dumping” signs in problem areas with a phone number for reporting dumping and disposal. Signs should also indicate fines and penalties for illegal dumping.

Refer to fact sheet SC-10 Non-Stormwater Discharges for additional information.

Preventative Maintenance

Catch Basins/Inlet Structures

Staff should regularly inspect facilities to ensure compliance with the following:

- Immediate repair of any deterioration threatening structural integrity.
- Cleaning before the sump is 40% full. Catch basins should be cleaned as frequently as needed to meet this standard.
Clean catch basins, storm drain inlets, and other conveyance structures before the wet season to remove sediments and debris accumulated during the summer.

Conduct inspections more frequently during the wet season for problem areas where sediment or trash accumulates more often. Prioritize storm drain inlets; clean and repair as needed.

Keep accurate logs of the number of catch basins cleaned.

Store wastes collected from cleaning activities of the drainage system in appropriate containers or temporary storage sites in a manner that prevents discharge to the storm drain.

Dewater the wastes if necessary with outflow into the sanitary sewer if permitted. Water should be treated with an appropriate filtering device prior to discharge to the sanitary sewer. If discharge to the sanitary sewer is not allowed, water should be pumped or vacuumed to a tank and properly disposed. Do not dewater near a storm drain or stream.

Storm Drain Conveyance System

Locate reaches of storm drain with deposit problems and develop a flushing schedule that keeps the pipe clear of excessive buildup.

Collect and pump flushed effluent to the sanitary sewer for treatment whenever possible.

Pump Stations

Clean all storm drain pump stations prior to the wet season to remove silt and trash.

Do not allow discharge to reach the storm drain system when cleaning a storm drain pump station or other facility.

Conduct routine maintenance at each pump station.

Inspect, clean, and repair as necessary all outlet structures prior to the wet season.

Open Channel

Modify storm channel characteristics to improve channel hydraulics, increase pollutant removals, and enhance channel/creek aesthetic and habitat value.

Conduct channel modification/improvement in accordance with existing laws. Any person, government agency, or public utility proposing an activity that will change the natural state of any river, stream, or lake in California, must enter into a Stream or Lake Alteration Agreement with the Department of Fish and Wildlife. The developer-applicant should also contact local governments (city, county, special districts), other state agencies (SWRCB, RWQCB, Department of Forestry, Department of Water Resources), and Army Corps of Engineers and USFWS.

Spill Response and Prevention Procedures

Keep your spill prevention control plan up-to-date.
Investigate all reports of spills, leaks, and/or illegal dumping promptly.

Place a stockpile of spill cleanup materials where it will be readily accessible or at a central location.

Clean up all spills and leaks using “dry” methods (with absorbent materials and/or rags) or dig up, remove, and properly dispose of contaminated soil.

Employee Training Program

Educate employees about pollution prevention measures and goals.

Train employees how to properly handle and dispose of waste using the source control BMPs described above.

Train employees and subcontractors in proper hazardous waste management.

Use a training log or similar method to document training.

Ensure that employees are familiar with the site’s spill control plan and/or proper spill cleanup procedures.

Have staff involved in detection and removal of illicit connections trained in the following:

- OSHA-required Health and Safety Training (29 CFR 1910.120) plus annual refresher training (as needed).
- Procedural training (field screening, sampling, smoke/dye testing, TV inspection).

Quality Assurance and Record Keeping

Keep accurate maintenance logs that document minimum BMP activities performed for drainage system maintenance, types and quantities of waste disposed of, and any improvement actions.

Keep accurate logs of spill response actions that document what was spilled, how it was cleaned up, and how the waste was disposed.

Keep accurate logs of illicit connections, illicit discharges, and illegal dumping into the storm drain system including how wastes were cleaned up and disposed.

Establish procedures to complete logs and file them in the central office.

Potential Limitations and Work-Arounds

Provided below are typical limitations and recommended “work-arounds” for drainage system maintenance:
Clean-up activities may create a slight disturbance for local aquatic species. Access to items and material on private property may be limited. Trade-offs may exist between channel hydraulics and water quality/riparian habitat. If storm channels or basins are recognized as wetlands, many activities, including maintenance, may be subject to regulation and permitting.

- Perform all maintenance onsite and do not flush accumulated material downstream to private property or riparian habitats.

Storm drain flushing is most effective in small diameter pipes (36-inch diameter pipe or less, depending on water supply and sediment collection capacity). Other considerations associated with storm drain flushing may include the availability of a water source, finding a downstream area to collect sediments, and liquid/sediment disposal.

- Develop and follow a site specific drainage system maintenance plan that describes maintenance locations, methods, required equipment, water sources, sediment collection areas, disposal requirements, and any other pertinent information.

Regulations may include adoption of substantial penalties for illegal dumping and disposal.

- Do not dump illegal materials anywhere onsite.
- Identify illicit connections, illicit discharge, and illegal dumping.
- Cleanup spills immediately and properly dispose of wastes.

Local municipal codes may include sections prohibiting discharge of soil, debris, refuse, hazardous wastes, and other pollutants into the sanitary sewer system.

- Collect all materials and pollutants accumulated in drainage system and dispose of according to local regulations.
- Install debris excluders in areas with a trash TMDL.

Potential Capital Facility Costs and Operation & Maintenance Requirements

Facilities

- Capital costs will vary substantially depending on the size of the facility and characteristics of the drainage system. Significant capital costs may be associated with purchasing water trucks, vacuum trucks, and any other necessary cleaning equipment or improving the drainage infrastructure to reduce the potential.

- Developing and implementing a site specific drainage system maintenance plan will require additional capital if a similar program is not already in place.
Maintenance

- Two-person teams may be required to clean catch basins with vactor trucks.
- Teams of at least two people plus administrative personnel are required to identify illicit discharges, depending on the complexity of the storm sewer system.
- Arrangements must be made for proper disposal of collected wastes.
- Technical staff are required to detect and investigate illegal dumping violations.
- Methods used for illicit connection detection (smoke testing, dye testing, visual inspection, and flow monitoring) can be costly and time-consuming. Site-specific factors, such as the level of impervious area, the density and ages of buildings, and type of land use will determine the level of investigation necessary.

Supplemental Information

Storm Drain Flushing

Flushing is a common maintenance activity used to improve pipe hydraulics and to remove pollutants in storm drainage systems. Flushing may be designed to hydraulically convey accumulated material to strategic locations, such as an open channel, another point where flushing will be initiated, or the sanitary sewer and the treatment facilities, thus preventing re-suspension and overflow of a portion of the solids during storm events. Flushing prevents “plug flow” discharges of concentrated pollutant loadings and sediments. Deposits can hinder the designed conveyance capacity of the storm drain system and potentially cause backwater conditions in severe cases of clogging.

Storm drain flushing usually takes place along segments of pipe with grades that are too flat to maintain adequate velocity to keep particles in suspension. An upstream manhole is selected to place an inflatable device that temporarily plugs the pipe. Further upstream, water is pumped into the line to create a flushing wave. When the upstream reach of pipe is sufficiently full to cause a flushing wave, the inflated device is rapidly deflated with the assistance of a vacuum pump, thereby releasing the backed up water and resulting in the cleaning of the storm drain segment.

To further reduce impacts of stormwater pollution, a second inflatable device placed well downstream may be used to recollect the water after the force of the flushing wave has dissipated. A pump may then be used to transfer the water and accumulated material to the sanitary sewer for treatment. In some cases, an interceptor structure may be more practical or required to recollect the flushed waters.

It has been found that cleansing efficiency of periodic flush waves is dependent upon flush volume, flush discharge rate, sewer slope, sewer length, sewer flow rate, sewer diameter, and population density. As a rule of thumb, the length of line to be flushed should not exceed 700 feet. At this maximum recommended length, the percent removal efficiency ranges between 65-75% for organics and 55-65% for dry weather grit/inorganic material. The percent removal efficiency drops rapidly beyond that. Water is commonly supplied by a water truck, but fire hydrants can also supply water. To make the best use of water, it is recommended that reclaimed water be used if allowed or that fire hydrant line flushing coincide with storm sewer flushing.
References and Resources

Appendix H: BMP Implementation Log
Table H.1 BMP Implementation Log

<table>
<thead>
<tr>
<th>Industrial Activity/Material and Location</th>
<th>BMP Description</th>
<th>Implementation Frequency</th>
<th>Implementation Description or Fact Sheet Reference</th>
<th>Person Responsible for Implementing BMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MONTHLY BMP INSPECTION REPORT

<table>
<thead>
<tr>
<th>Date and Time of Inspection:</th>
<th>Date Report Written:</th>
</tr>
</thead>
</table>

Part I. General Information

Site Information
- **Facility Name:**
- **Facility Address:**

Photos Taken:
- (Circle one) Yes
- No
- **Photo Reference IDs:**

Weather
- **Estimate storm beginning:** (date and time)
- **Estimate storm duration:** (hours)
- **Estimate time since last runoff from any drainage area:** (days or hours)
- **Rain gauge reading and location:** (in)

Exception Documentation (explanation required if inspection could not be conducted).

Exception Documentation

Inspector Information
- **Inspector Name:**
- **Inspector Title:**
- **Signature:**
- **Date:**
Part II. BMP Observations. Describe deficiencies in Part III.

<table>
<thead>
<tr>
<th>Minimum BMPs (List and Inspect all BMPs Implemented)</th>
<th>Failures or other Deficiencies (yes, no, N/A)</th>
<th>Action Required (yes/no)</th>
<th>Action Implemented (Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Housekeeping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-stormwater Discharges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Fueling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Cleaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Maintenance and Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Loading and Unloading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Liquid Container Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Equipment Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Storage of Raw Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Handling and Disposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building and Ground Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Repair, Remodeling, and Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Area Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage System Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventative Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Fueling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Cleaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Maintenance and Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Liquid Container Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Equipment Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Storage of Raw Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Handling and Disposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Area Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage System Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spill and Leak Prevention and Response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-stormwater Discharges</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spill Prevention, Control, and Cleanup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Fueling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Cleaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Vehicle and Equipment Maintenance and Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Loading and Unloading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Liquid Container Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Equipment Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Storage of Raw Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Handling and Disposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building and Ground Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Repair, Remodeling, and Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Area Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage System Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Handling and Waste Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Fueling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Cleaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and Equipment Maintenance and Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Loading and Unloading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Liquid Container Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Equipment Operations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Handling and Disposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building and Ground Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Repair, Remodeling, and Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion and Sediment Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Storage of Raw Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contaminated or Erodible Surfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Repair, Remodeling, and Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part II. BMP Observations Continued. Describe deficiencies in Part III.

<table>
<thead>
<tr>
<th>Advanced BMPs (List and Inspect all BMPs Implemented)</th>
<th>Adequately designed, implemented and effective (yes, no, N/A)</th>
<th>Action Required (yes/no)</th>
<th>Action Implemented (Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Minimization BMPs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stormwater Containment and Discharge Reduction BMPs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Control BMPs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Advanced BMPs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part III. Descriptions of BMP Deficiencies

<table>
<thead>
<tr>
<th>Deficiency</th>
<th>Repairs Implemented: Note - Repairs must be completed as soon as possible.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Repaired (Y/N)</td>
</tr>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
</tbody>
</table>

Part IV. Additional Corrective Actions Required.
Identify additional corrective actions not included with BMP Deficiencies (Part III) above. Identify BMPs that need more frequent inspection. Note if SWPPP change is required.

<table>
<thead>
<tr>
<th>Required Actions</th>
<th>Implementation Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IT IS HEREBY ORDERED that as of July 1, 2015 this Order supersedes Order 97-03-DWQ except for Order 97-03-DWQ’s requirement to submit annual reports by July 1, 2015 and except for enforcement purposes. As of July 1, 2015, a Discharger shall comply with the requirements in this Order to meet the provisions contained in Division 7 of the California Water Code (commencing with section 13000) and regulations adopted thereunder, and the provisions of the federal Clean Water Act and regulations and guidelines adopted thereunder.

CERTIFICATION

I, Jeanine Townsend, Clerk to the Board, do hereby certify that this Order, including its fact sheet, attachments, and appendices is a full, true, and correct copy of an Order adopted by the State Water Resources Control Board, on April 1, 2014.

AYE: Chair Felicia Marcus
 Vice Chair Frances Spivy-Weber
 Board Member Tam M. Doduc
 Board Member Steven Moore

NAY: None

ABSENT: Board Member Dorene D’Adamo

ABSTAIN: None

Jeanine Townsend
Clerk to the Board
TABLE OF CONTENTS

I. FINDINGS ... 1
II. RECEIVING GENERAL PERMIT COVERAGE ... 14
III. DISCHARGE PROHIBITIONS .. 19
IV. AUTHORIZED NON-STORM WATER DISCHARGES (NSWDS) 19
V. EFFLUENT LIMITATIONS ... 20
VI. RECEIVING WATER LIMITATIONS ... 21
VII. TOTAL MAXIMUM DAILY LOADS (TMDLS) ... 21
VIII. DISCHARGES SUBJECT TO THE CALIFORNIA OCEAN PLAN 22
IX. TRAINING QUALIFICATIONS ... 23
X. STORM WATER POLLUTION PREVENTION PLAN (SWPPP) 24
XI. MONITORING .. 37
XII. EXCEEDANCE RESPONSE ACTIONS (ERAS) .. 48
XIII. INACTIVE MINING OPERATION CERTIFICATION .. 56
XIV. COMPLIANCE GROUPS AND COMPLIANCE GROUP LEADERS 57
XV. ANNUAL COMPREHENSIVE FACILITY COMPLIANCE EVALUATION (ANNUAL EVALUATION) 59
XVI. ANNUAL REPORT ... 59
XVII. CONDITIONAL EXCLUSION - NO EXPOSURE CERTIFICATION (NEC) 60
XVIII. SPECIAL REQUIREMENTS - PLASTIC MATERIALS .. 64
XIX. REGIONAL WATER BOARD AUTHORITIES ... 66
XX. SPECIAL CONDITIONS ... 67
XXI. STANDARD CONDITIONS .. 69

TABLES

TABLE 1: Additional Analytical Parameters ..41
TABLE 2: Parameter NAL Values, Test Methods, and Reporting Units43

ATTACHMENTS AND APPENDICES

- Attachment A Facilities Covered
- Attachment B Acronyms
- Attachment C Glossary
- Attachment D Permit Registration Documents (PRDs)
- Attachment E TMDL Implementation
- Attachment F Effluent Limitation Guidelines (ELGs)
- Attachment G Requirements for Dischargers Who Have Been Granted An Ocean Plan Exception for Discharges to Areas of Special Biological Significance (ASBS)
- Attachment H Storm Water Sample Collection and Handling Instructions
- Appendix 1 Storm Water Pollution Prevention Plan (SWPPP) Checklist
- Appendix 2 No Exposure Certification (NEC) Conditional Exclusion Instructions
- Appendix 3 Waterbodies with Clean Water Act section 303(d) Listed Impairments
I. FINDINGS

A. General Findings

The State Water Resources Control Board (State Water Board) finds that:

1. The Federal Clean Water Act (Clean Water Act) prohibits certain discharges of storm water containing pollutants except in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. (33 U.S.C. §§ 1311, 1342 (also referred to as Clean Water Act §§ 301, 402).) The United States Environmental Protection Agency (U.S. EPA) promulgates federal regulations to implement the Clean Water Act’s mandate to control pollutants in storm water discharges. (40 C.F.R. § 122, et seq.) The NPDES permit must require implementation of Best Available Technology Economically Achievable (BAT) and Best Conventional Pollutant Control Technology (BCT) to reduce or prevent pollutants in storm water discharges and authorized non-storm water discharges (NSWDs). The NPDES permit must also include additional requirements necessary to implement applicable water quality objectives or water quality standards (water quality standards, collectively).

2. On November 16, 1990, U.S. EPA promulgated Phase I storm water regulations in compliance with section 402(p) of the Clean Water Act. (55 Fed. Reg. 47990, codified at 40 C.F.R. § 122.26.) These regulations require operators of facilities subject to storm water permitting (Dischargers), that discharge storm water associated with industrial activity (industrial storm water discharges), to obtain an NPDES permit. Section 402(p)(3)(A) of the Clean Water Act also requires that permits for discharges associated with industrial activity include requirements necessary to meet water quality standards.

3. Phase II storm water regulations\(^1\) require permitting for storm water discharges from facilities owned and operated by a municipality with a population of less than 100,000. The previous exemption from the Phase I permitting requirements under section 1068 of the Intermodal Surface Transportation Efficiency Act of 1991 was eliminated.

4. This Order (General Permit) is an NPDES General Permit issued in compliance with section 402 of the Clean Water Act and shall take effect on July 1, 2015, provided that the Regional Administrator of U.S. EPA has no objection. If the U.S. EPA Regional Administrator has an objection, this General Permit will not become effective until the objection is withdrawn.

5. This action to adopt an NPDES General Permit is exempt from the provisions of the California Environmental Quality Act (Pub. Resources Code, § 21000, et seq.) in accordance with section 13389 of the Water Code. (See County of

Industrial General Permit Order

6. State Water Board Order 97-03-DWQ is rescinded as of the effective date of this General Permit (July 1, 2015) except for Order 97-03-DWQ’s requirement that annual reports be submitted by July 1, 2015 and except for enforcement purposes.

7. Effective July 1, 2015, the State Water Board and the Regional Water Quality Control Boards (Regional Water Boards) (Water Boards, collectively) will enforce the provisions herein.

8. This General Permit authorizes discharges of industrial storm water to waters of the United States, so long as those discharges comply with all requirements, provisions, limitations, and prohibitions in this General Permit.

9. Industrial activities covered under this General Permit are described in Attachment A.

10. The Fact Sheet for this Order is incorporated as findings of this General Permit.

11. Acronyms are defined in Attachment B and terms used in this General Permit are defined in Attachment C.

12. This General Permit regulates industrial storm water discharges and authorized NSWDs from specific categories of industrial facilities identified in Attachment A hereto, and industrial storm water discharges and authorized NSWDs from facilities designated by the Regional Water Boards to obtain coverage under this General Permit. This General Permit does not apply to industrial storm water discharges and NSWDs that are regulated by other individual or general NPDES permits.

13. This General Permit does not preempt or supersede the authority of municipal agencies to prohibit, restrict, or control industrial storm water discharges and authorized NSWDs that may discharge to storm water conveyance systems or other watercourses within their jurisdictions as allowed by state and federal law.

14. All terms defined in the Clean Water Act, U.S. EPA regulations, and the Porter-Cologne Water Quality Control Act (Wat. Code, § 13000, et seq.) will have the same definition in this General Permit unless otherwise stated.

15. Pursuant to 40 Code of Federal Regulations section 131.12 and State Water Board Resolution 68-16, which incorporates the requirements of 40 Code of Federal Regulations section 131.12 where applicable, the State Water Board finds that discharges in compliance with this General Permit will not result in the lowering of water quality to a level that does not achieve water quality objectives and protect beneficial uses. Any degradation of water quality from existing high quality water to a level that achieves water quality objectives and
protects beneficial uses is appropriate to support economic development. This General Permit’s requirements constitute best practicable treatment or control for discharges of industrial storm water and authorized non-storm water discharges, and are therefore consistent with those provisions.

16. Compliance with any specific limits or requirements contained in this General Permit does not constitute compliance with any other applicable permits.

17. This General Permit requires that the Discharger certify and submit all Permit Registration Documents (PRDs) for Notice of Intent (NOI) and No Exposure Certification (NEC) coverage via the State Water Board’s Storm Water Multiple Application and Report Tracking System (SMARTS) website. (See Attachment D for an example of the information required to be submitted in the PRDs via SMARTS.) All other documents required by this General Permit to be electronically certified and submitted via SMARTS can be submitted by the Discharger or by a designated Duly Authorized Representative on behalf of the Discharger. Electronic reporting is required to reduce the state’s reliance on paper, to improve efficiency, and to make such General Permit documents more easily accessible to the public and the Water Boards.

18. All information provided to the Water Boards shall comply with the Homeland Security Act and all other federal law that concerns security in the United States, as applicable.

B. Industrial Activities Not Covered Under this General Permit

19. Discharges of storm water from areas on tribal lands are not covered under this General Permit. Storm water discharges from industrial facilities on tribal lands are regulated by a separate NPDES permit issued by U.S. EPA.

20. Discharges of storm water regulated under another individual or general NPDES permit adopted by the State Water Board or Regional Water Board are not covered under this General Permit, including the State Water Board NPDES General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities.

21. Storm water discharges to combined sewer systems are not covered under this General Permit. These discharges must be covered by an individual permit. (40 C.F.R. § 122.26(a)(7).)

22. Conveyances that discharge storm water runoff combined with municipal sewage are not covered under this General Permit.

23. Discharges of storm water identified in Clean Water Act section 402(l) (33 U.S.C. § 1342(l)) are not covered under this General Permit.

24. Facilities otherwise subject to this General Permit but for which a valid Notice of Non-Applicability (NONA) has been certified and submitted via SMARTS, by the Entity are not covered under this General Permit. Entities (See Section XX.C.1 of this General Permit) who are claiming “No Discharge”
through the NONA shall meet the eligibility requirements and provide a No Discharge Technical Report in accordance with Section XX.C.

25. This General Permit does not authorize discharges of dredged or fill material regulated by the US Army Corps of Engineers under section 404 of the Clean Water Act and does not constitute a water quality certification under section 401 of the Clean Water Act.

C. Discharge Prohibitions

26. Pursuant to section 13243 of the Water Code, the State Water Board may specify certain conditions or areas where the discharge of waste, or certain types of waste, is prohibited.

27. With the exception of certain authorized NSWDs as defined in Section IV, this General Permit prohibits NSWDs. The State Water Board recognizes that certain NSWDs should be authorized because they are not generated by industrial activity, are not significant sources of pollutants when managed appropriately, and are generally unavoidable because they are related to safety or would occur regardless of industrial activity. Prohibited NSWDs may be authorized under other individual or general NPDES permits, or waste discharge requirements issued by the Water Boards.

28. Prohibited NSWDs are referred to as unauthorized NSWDs in this General Permit. Unauthorized NSWDs shall be either eliminated or permitted by a separate NPDES permit. Unauthorized NSWDs may contribute significant pollutant loads to receiving waters. Measures to control sources of unauthorized NSWDs such as spills, leakage, and dumping, must be addressed through the implementation of Best Management Practices (BMPs).

29. This General Permit incorporates discharge prohibitions contained in water quality control plans, as implemented by the Water Boards.

30. Direct discharges of waste, including industrial storm water discharges, to Areas of Special Biological Significance (ASBS) are prohibited unless the Discharger has applied for and the State Water Board has granted an exception to the State Water Board’s 2009 Water Quality Control Plan for Ocean Waters of California as amended by State Water Board Resolution 2012-0056 (California Ocean Plan) allowing the discharge.

D. Effluent Limitations

31. Section 301(b) of the Clean Water Act and 40 Code of Federal Regulations section require NPDES permits to include technology-based requirements at a minimum, and any more stringent effluent limitations necessary for receiving waters to meet applicable water quality standards. Clean Water Act section 402(p)(3)(A) requires that discharges of storm water runoff from industrial facilities comply with Clean Water Act section 301.

32. This General Permit requires control of pollutant discharges using BAT and BCT to reduce and prevent discharges of pollutants, and any more stringent effluent limitations necessary for receiving waters to meet applicable water quality standards.

33. It is not feasible for the State Water Board to establish numeric technology based effluent limitations for discharges authorized by this General Permit at this time. The rationale for this determination is discussed in detail in the Fact Sheet of this General Permit. Therefore, this General Permit requires Dischargers to implement minimum BMPs and applicable advanced BMPs as defined in Section X.H (collectively, BMPs) to comply with the requirements of this General Permit. This approach is consistent with U.S. EPA’s 2008 Multi-Sector General Permit for Stormwater Discharges Associated with Industrial Activity (2008 MSGP).

34. 40 Code of Federal Regulations section 122.44(d) requires that NPDES permits include Water Quality Based Effluent Limitations (WQBELs) to attain and maintain applicable numeric and narrative water quality standards for receiving waters.

35. Where numeric water quality criteria have not been established, 40 Code of Federal Regulations section 122.44(d)(1)(vi) provides that WQBELs may be established using U.S. EPA criteria guidance under section 304(a) of the Clean Water Act, a proposed state criteria or policy interpreting narrative criteria supplemented with other relevant information, and/or an indicator parameter.

36. This General Permit requires Dischargers to implement BMPs when necessary, in order to support attainment of water quality standards. The use of BMPs to control or abate the discharge of pollutants is authorized by 40 Code of Federal Regulations section 122.44(k)(3) because numeric effluent limitations are infeasible and implementation of BMPs is reasonably necessary to achieve effluent limitations and water quality standards, and to carry out the purposes and intent of the Clean Water Act. (40 C.F.R. § 122.44(k)(4).)

E. Receiving Water Limitations

37. This General Permit requires compliance with receiving water limitations based on water quality standards. The primary receiving water limitation requires that industrial storm water discharges and authorized NSWDs not
cause or contribute to an exceedance of applicable water quality standards. Water quality standards apply to the quality of the receiving water, not the quality of the industrial storm water discharge. Therefore, compliance with the receiving water limitations generally cannot be determined solely by the effluent water quality characteristics. If any Discharger’s storm water discharge causes or contributes to an exceedance of a water quality standard, that Discharger must implement additional BMPs or other control measures in order to attain compliance with the receiving water limitation. Compliance with water quality standards may, in some cases, require Dischargers to implement controls that are more protective than controls implemented solely to comply with the technology-based requirements in this General Permit.

F. Total Maximum Daily Loads (TMDLs)

38. TMDLs relate to the maximum amount of a pollutant that a water body can receive and still attain water quality standards. A TMDL is defined as the sum of the allowable loads of a single pollutant from all contributing point sources (the waste load allocations) and non-point sources (load allocations), plus the contribution from background sources. (40 C.F.R. § 130.2(i).) Discharges addressed by this General Permit are considered to be point source discharges, and therefore must comply with effluent limitations that are “consistent with the assumptions and requirements of any available waste load allocation for the discharge prepared by the state and approved by U.S. EPA pursuant to 40 Code of Federal Regulations section 130.7. (40 C.F.R. § 122.44 (d)(1)(vii).) In addition, Water Code section 13263, subdivision (a), requires that waste discharge requirements implement any relevant water quality control plans. Many TMDLs contained in water quality control plans include implementation requirements in addition to waste load allocations. Attachment E of this General Permit lists the watersheds with U.S. EPA-approved and U.S. EPA-established TMDLs that include requirements, including waste load allocations, for Dischargers covered by this General Permit.

39. The State Water Board recognizes that it is appropriate to develop TMDL-specific permit requirements derived from each TMDL’s waste load allocation and implementation requirements, in order to provide clarity to Dischargers regarding their responsibilities for compliance with applicable TMDLs. The development of TMDL-specific permit requirements is subject to public noticing requirements and a corresponding public comment period. Due to the number and variety of Dischargers subject to a wide range of TMDLs, development of TMDL-specific permit requirements for each TMDL listed in Attachment E will severely delay the reissuance of this General Permit. Because most of the TMDLs were established by the Regional Water Boards, and because some of the waste load allocations and/or implementation requirements may be shared by multiple Dischargers, the development of TMDL-specific permit requirements is best coordinated at the Regional Water Board level.
40. State and Regional Water Board staff will develop proposed TMDL-specific permit requirements (including monitoring and reporting requirements) for each of the TMDLs listed in Attachment E. After conducting a 30-day public comment period, the Regional Water Boards will submit to the State Water Board proposed TMDL-specific permit requirements for adoption by the State Water Board into this General Permit by July 1, 2016. The Regional Water Boards may also include proposed TMDL-specific monitoring requirements for inclusion in this General Permit, or may issue Regional Water Board orders pursuant to Water Code section 13383 requiring TMDL-specific monitoring. The proposed TMDL-specific permit requirements shall have no force or effect until adopted, with or without modification, by the State Water Board. Consistent with the 2008 MSGP, Dischargers are not required to take any additional actions to comply with the TMDLs listed in Attachment E until the State Water Board reopens this General Permit and includes TMDL-specific permit requirements, unless notified otherwise by a Regional Water Board.

41. The Regional Water Boards shall submit to the State Water Board the following information for each of the TMDLs listed in Attachment E:

 a. Proposed TMDL-specific permit, monitoring and reporting requirements applicable to industrial storm water discharges and NSWWDs authorized under this General Permit, including compliance schedules and deliverables consistent with the TMDLs. TMDL-specific permit requirements are not limited by the BAT/BCT technology-based standards;

 b. An explanation of how the proposed TMDL-specific permit requirements, compliance schedules, and deliverables are consistent with the assumptions and requirements of any applicable waste load allocation and implement each TMDL; and,

 c. Where a BMP-based approach is proposed, an explanation of how the proposed BMPs will be sufficient to implement applicable waste load allocations.

42. Upon receipt of the information described in Finding 40, and no later than July 1, 2016, the State Water Board will issue a public notice and conduct a public comment period for the reopening of this General Permit to amend Attachment E, the Fact Sheet, and other provisions as necessary for incorporation of TMDL-specific permit requirements into this General Permit. Attachment E may also be subsequently reopened during the term of this General Permit to incorporate additional TMDL-specific permit requirements.

G. Discharges Subject to the California Ocean Plan

43. On October 16, 2012 the State Water Board amended the California Ocean Plan. The amended California Ocean Plan requires industrial storm water dischargers with outfalls discharging to ocean waters to comply with the
California Ocean Plan’s model monitoring provisions. These provisions require Dischargers to: (a) monitor runoff for specific parameters at all outfalls from two storm events per year, and collect at least one representative receiving water sample per year, (b) conduct specified toxicity monitoring at certain types of outfalls at a minimum of once per year, and (c) conduct marine sediment monitoring for toxicity under specific circumstances. The California Ocean Plan provides conditions under which some of the above monitoring provisions may be waived by the Water Boards.

44. This General Permit requires Dischargers with outfalls discharging to ocean waters that are subject to the model monitoring provisions of the California Ocean Plan to develop and implement a monitoring plan in compliance with those provisions and any additional monitoring requirements established pursuant to Water Code section 13383. Dischargers that have not developed and implemented a monitoring program in compliance with the California Ocean Plan’s model monitoring provisions by July 1, 2015 (the effective date of this General Permit), or seven (7) days prior to commencing operations, whichever is later, are ineligible to obtain coverage under this General Permit.

45. The California Ocean Plan prohibits the direct discharge of waste to ASBS. ASBS are defined in California Ocean Plan as “those areas designated by the State Water Board as ocean areas requiring protection of species or biological communities to the extent that alteration of natural water quality is undesirable.”

46. The California Ocean Plan authorizes the State Water Board to grant an exception to Ocean Plan provisions where the board determines that the exception will not compromise protection of ocean waters for beneficial uses and the public interest will be served.

47. On March 20, 2012, the State Water Board adopted Resolution 2012-0012 which contains exceptions to the California Ocean Plan for specific discharges of storm water and non-point sources. This resolution also contains the special protections that are to be implemented for those discharges to ASBS.

48. This General Permit requires Dischargers who have been granted an exception to the Ocean Plan authorizing the discharges to ASBS by the State Water Board to comply with the requirements contained in Section VIII.B of this General Permit.

H. Training

49. To improve compliance and maintain consistent implementation of this General Permit, Dischargers are required to designate a Qualified Industrial Storm Water Practitioner (QISP) for each facility the Discharger operates that has entered Level 1 status in the Exceedance Response Action (ERA) process as described in Section XII of this General Permit. A QISP may be assigned to more than one facility. In order to qualify as a QISP, a State
Water Board-sponsored or approved training course must be completed. A competency exam may be required by the State Water Board to demonstrate sufficient knowledge of the QISP course material.

50. A QISP must assist the Discharger in completing the Level 1 status and Level 2 status ERA requirements as specified in Section XII of this General Permit. A QISP is also responsible for assisting New Dischargers that will be discharging to an impaired water body with a 303(d) listed impairment, demonstrate eligibility for coverage through preparing the data and/or information required in Section VII.B.

51. A Compliance Group Leader, as defined in Section XIV of this General Order must complete a State Water Board sponsored or approved training program for Compliance Group Leaders.

52. All engineering work subject to the Professional Engineers Act (Bus. & Prof. Code § 6700, et seq.) and required by this General Permit shall be performed by a California licensed professional engineer.

53. California licensed professional civil, industrial, chemical, and mechanical engineers and geologists have licenses that have professional overlap with the topics of this General Permit. The California Department of Consumer Affairs, Board for Professional Engineers, Land Surveyors and Geologists (CBPELSG) provides the licensure and regulation of professional civil, industrial, chemical, and mechanical engineers and professional geologists in California. The State Water Board is developing a specialized self-guided State Water Board-sponsored registration and training program specifically for these CPBELSG licensed engineers and geologists in good standing with CBPELSG.

I. Storm Water Pollution Prevention Plan (SWPPP) Requirements

54. This General Permit requires the development of a site-specific SWPPP in accordance with Section X of this General Permit. The SWPPP must include the information needed to demonstrate compliance with the requirements of this General Permit. The SWPPP must be submitted electronically via SMARTS, and a copy be kept at the facility. SWPPP revisions shall be completed in accordance with Section X.B of this General Permit

J. Sampling, Visual Observations, Reporting and Record Keeping

55. This General Permit complies with 40 Code of Federal Regulations section 122.44(i), which establishes monitoring requirements that must be included in storm water permits. Under this General Permit, Dischargers are required to: (a) conduct an Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation) to identify areas of the facility contributing pollutants to industrial storm water discharges, (b) evaluate whether measures to reduce or prevent industrial pollutant loads identified in the Discharger’s SWPPP are adequate and properly implemented in accordance with the terms of this
General Permit, and (c) determine whether additional control measures are needed.

56. This General Permit contains monitoring requirements that are necessary to determine whether pollutants are being discharged, and whether response actions are necessary. Data and information resulting from the monitoring will assist in Dischargers’ evaluations of BMP effectiveness and compliance with this General Permit. Visual observations are one form of monitoring. This General Permit requires Dischargers to perform a variety of visual observations designed to identify pollutants in industrial storm water discharges and their sources. To comply with this General Permit Dischargers shall: (1) electronically self-report any violations via SMARTS, (2) comply with the Level 1 status and Level 2 status ERA requirements, when applicable, and (3) adequately address and respond to any Regional Water Board comments on the Discharger’s compliance reports.

57. Dischargers that meet the requirements of the No Exposure Certification (NEC) Conditional Exclusion set forth in Section XVII of this General Permit are exempt from the SWPPP requirements, sampling requirements, and visual observation requirements in this General Permit.

K. Facilities Subject to Federal Storm Water Effluent Limitation Guidelines (ELGs)

58. U.S. EPA regulations at 40 Code of Federal Regulations Chapter I Subchapter N (Subchapter N) establish technology-based Effluent Limitation Guidelines and New Source Performance Standards (ELGs) for industrial storm water discharges from facilities in specific industrial categories. For these facilities, compliance with the BAT/BCT and ELG requirements constitutes compliance with technology-based requirements of this General Permit.

59. 40 Code of Federal Regulations section 122.44(i)(3) and (4) require storm water permits to require at least one Annual Evaluation and any monitoring requirements for applicable ELGs in Subchapter N. This General Permit requires Dischargers to comply with all applicable ELG requirements found in Subchapter N.

L. Sampling and Analysis Reduction

60. This General Permit reduces the number of qualifying sampling events required to be sampled each year when the Discharger demonstrates: (1) consistent compliance with this General Permit, (2) consistent effluent water quality sampling, and (3) analysis results that do not exceed numerical action levels.

M. Role of Numeric Action Levels (NALs) and Exceedance Response Actions (ERAs)
61. This General Permit incorporates a multiple objective performance measurement system that includes NALs, new comprehensive training requirements, Level 1 ERA Reports, Level 2 ERA Technical Reports, and Level 2 ERA Action Plans. Two objectives of the performance measurement system are to inform Dischargers, the public and the Water Boards on: (1) the overall pollutant control performance at any given facility, and (2) the overall performance of the industrial statewide storm water program. Additionally, the State Water Board expects that this information and assessment process will provide information necessary to determine the feasibility of numeric effluent limitations for industrial dischargers in the next reissuance of this General Permit, consistent with the State Water Board Storm Water Panel of Experts' June 2006 Recommendations.³

62. This General Permit contains annual and instantaneous maximum NALs. The annual NALs are established as the 2008 MSGP benchmark values, and are applicable for all parameters listed in Table 2. The instantaneous maximum NALs are calculated from a Water Board dataset, and are only applicable for Total Suspended Solids (TSS), Oil and Grease (O&G), and pH. An NAL exceedance is determined as follows:

a. For annual NALs, an exceedance occurs when the average of all analytical results from all samples taken at a facility during a reporting year for a given parameter exceeds an annual NAL value listed in Table 2 of this General Permit; or,

b. For the instantaneous maximum NALs, an exceedance occurs when two or more analytical results from samples taken for any parameter within a reporting year exceed the instantaneous maximum NAL value (for Total Suspended Solids, and Oil and Grease), or are outside of the instantaneous maximum NAL range (for pH) listed in Table 2 of this General Permit. For the purposes of this General Permit, the reporting year is July 1 through June 30.

63. The NALs are not intended to serve as technology-based or water quality-based numeric effluent limitations. The NALs are not derived directly from either BAT/BCT requirements or receiving water objectives. NAL exceedances defined in this General Permit are not, in and of themselves, violations of this General Permit. A Discharger that does not fully comply with the Level 1 status and/or Level 2 status ERA requirements, when required by the terms of this General Permit, is in violation of this General Permit.

64. ERAs are designed to assist Dischargers in complying with this General Permit. Dischargers subject to ERAs must evaluate the effectiveness of their

BMPs being implemented to ensure they are adequate to achieve compliance with this General Permit.

65. U.S. EPA regulations at Subchapter N establish ELGs for storm water discharges from facilities in 11 industrial categories. Dischargers subject to these ELGs are required to comply with the applicable requirements.

66. Exceedances of the NALs that are attributable solely to pollutants originating from non-industrial pollutant sources (such as run-on from adjacent facilities, non-industrial portions of the Discharger’s property, or aerial deposition) are not a violation of this General Permit because the NALs are designed to provide feedback on industrial sources of pollutants. Dischargers may submit a Non-Industrial Source Pollutant Demonstration as part of their Level 2 ERA Technical Report to demonstrate that the presence of a pollutant causing an NAL exceedance is attributable solely to pollutants originating from non-industrial pollutant sources.

67. A Discharger who has designed, installed, and implemented BMPs to reduce or prevent pollutants in industrial storm water discharges in compliance with this General Permit may submit an Industrial Activity BMPs Demonstration, as part of their Level 2 ERA Technical Report.

68. This General Permit establishes design storm standards for all treatment control BMPs. These design standards are directly based on the standards in State Water Board Order 2000-0011 regarding Standard Urban Storm Water Mitigation Plans (SUSMPs). These design standards are generally expected to be consistent with BAT/BCT, to be protective of water quality, and to be effective for most pollutants. The standards are intended to eliminate the need for most Dischargers to further treat/control industrial storm water discharges that are unlikely to contain pollutant loadings that exceed the NALs set forth in this General Permit.

N. Compliance Groups

69. Compliance Groups are groups of Dischargers (Compliance Group Participants) that share common types of pollutant sources and industrial activity characteristics. Compliance Groups provide an opportunity for the Compliance Group Participants to combine resources and develop consolidated Level 1 ERA Reports for Level 1 NAL exceedances and appropriate BMPs for implementation in response to Level 2 status ERA requirements that are representative of the entire Compliance Group. Compliance Groups also provide the Water Boards and the public with valuable information as to how industrial storm water discharges are affected by non-industrial background pollutant sources (including natural background) and geographic locations. When developing the next reissuance of this General Permit, the State Water Board expects to have a better understanding of the feasibility and benefits of sector-specific and watershed-based permitting alternatives, which may include technology- or water quality-based numeric effluent limitations. The effluent data, BMP performance data
and other information provided from Compliance Groups’ consolidated reporting will further assist the State Water Board in addressing sector-specific and watershed-based permitting alternatives.

O. Conditional Exclusion – No Exposure Certification (NEC)

70. Pursuant to U.S. EPA Phase II regulations, all Dischargers subject to this General Permit may qualify for a conditional exclusion from specific requirements if they submit a NEC demonstrating that their facilities have no exposure of industrial activities and materials to storm water discharges.

71. This General Permit requires Dischargers who seek the NEC conditional exclusion to obtain coverage in accordance with Section XVII of this General Permit. Dischargers that meet the requirements of the NEC are exempt from the SWPPP, sampling requirements, and monitoring requirements in this General Permit.

72. Dischargers seeking NEC coverage are required to certify and submit the applicable permit registration documents. Annual inspections, re-certifications, and fees are required in subsequent years. Light industry facility Dischargers excluded from coverage under the previous permit (Order 97-03-DWQ) must obtain the appropriate coverage under this General Permit. Failure to comply with the Conditional Exclusion conditions listed in this General Permit may lead to enforcement for discharging without a permit pursuant to sections 13385 or 13399.25, et seq., of the Water Code. A Discharger with NEC coverage that anticipates a change (or changes) in circumstances that would lead to exposure should register for permit coverage prior to the anticipated changes.

P. Special Requirements for Facilities Handling Plastic Materials

73. Section 13367 of the Water Code requires facilities handling preproduction plastic to implement specific BMPs aimed at minimizing discharges of such materials. The definition of Plastic Materials for the purposes of this General Permit includes the following types of sources of Plastic Materials: virgin and recycled plastic resin pellets, powders, flakes, powdered additives, regrind, dust, and other types of preproduction plastics with the potential to discharge or migrate off-site.

Q. Regional Water Board Authorities

74. Regional Water Boards are primarily responsible for enforcement of this General Permit. This General Permit recognizes that Regional Water Boards have the authority to protect the beneficial uses of receiving waters and prevent degradation of water quality in their region. As such, Regional Water Boards may modify monitoring requirements and review, comment, approve or disapprove certain Discharger submittals required under this General Permit.
IT IS HEREBY ORDERED that all Dischargers subject to this General Permit shall comply with the following conditions and requirements.

II. RECEIVING GENERAL PERMIT COVERAGE

A. Certification

1. For Storm Water Multiple Application and Report Tracking System (SMARTS) electronic account management and security reasons, as well as enforceability of this General Permit, the Discharger’s Legally Responsible Person (LRP) of an industrial facility seeking coverage under this General Permit shall certify and submit all Permit Registration Documents (PRDs) for Notice of Intent (NOI) or No Exposure Certification (NEC) coverage. All other documents shall be certified and submitted via SMARTS by the Discharger’s (LRP) or by their Duly Authorized Representative in accordance with the Electronic Signature and Certification Requirements in Section XXI.K. All documents required by this General Permit that are certified and submitted via SMARTS shall be in accordance with Section XXI.K.

2. Hereinafter references to certifications and submittals by the Discharger refer to the Discharger’s LRP and their Duly Authorized Representative.

B. Coverages

This General Permit includes requirements for two (2) types of permit coverage, NOI coverage and NEC coverage. State Water Board Order 97-03-DWQ (previous permit) remains in effect until July 1, 2015. When PRDs are certified and submitted and the annual fee is received, the State Water Board will assign the Discharger a Waste Discharger Identification (WDID) number.

1. General Permit Coverage (NOI Coverage)

 a. Dischargers that discharge storm water associated with industrial activity to waters of the United States are required to meet all applicable requirements of this General Permit.

 b. The Discharger shall register for coverage under this General Permit by certifying and submitting PRDs via SMARTS (http://smarts.waterboards.ca.gov), which consist of:

 i. A completed NOI and signed certification statement;

 ii. A copy of a current Site Map from the Storm Water Pollution Prevention Plan (SWPPP) in Section X.E;

 iii. A SWPPP (see Section X); and,

Order 2014-0057-DWQ 14
c. The Discharger shall pay the appropriate Annual Fee in accordance with California Code of Regulations, title 23, section 2200 et seq.\(^4\)

2. General Permit Coverage (NEC Coverage)

 a. Dischargers that certify their facility has no exposure of industrial activities or materials to storm water in accordance with Section XVII qualify for NEC coverage and are not required to comply with the SWPPP or monitoring requirements of this General Permit.

 b. Dischargers who qualify for NEC coverage shall conduct one Annual Facility Comprehensive Compliance Evaluation (Annual Evaluation) as described in Section XV, pay an annual fee, and certify annually that their facilities continue to meet the NEC requirements.

 c. The Discharger shall submit the following PRDs on or before October 1, 2015 for NEC coverage via SMARTS:

 i. A completed NEC Form (Section XVII.F.1) and signed certification statement (Section XVII.H);

 ii. A completed NEC Checklist (Section XVII.F.2); and

 iii. A current Site Map consistent with requirements in Section X.E.;

 d. The Discharger shall pay the appropriate annual fee in accordance with California Code of Regulations, title 23, section 2200 et seq.\(^5\)

3. General PRD Requirements

 a. Site Maps

 Dischargers registering for NOI or NEC coverage shall prepare a site map(s) as part of their PRDs in accordance with Section X.E. A separate copy of the site map(s) is required to be in the SWPPP. If there is a significant change in the facility layout (e.g., new building, change in storage locations, boundary change, etc.) a revision to the site map is required and shall be certified and submitted via SMARTS.

 b. A Discharger shall submit a single set of PRDs for coverage under this General Permit for multiple industrial activities occurring at the same facility.

 c. Any information provided to the Water Boards by the Discharger shall comply with the Homeland Security Act and other federal law that

\(^4\) Annual fees must be mailed or sent electronically using the State Water Boards’ Electronic Funds Transfer (EFT) system in SMARTS.

\(^5\) See footnote 4.
addresses security in the United States; any information that does not comply should not be submitted in the PRDs. The Discharger must provide justification to the Regional Water Board regarding redacted information within any submittal.

d. Dischargers may redact trade secrets from information that is submitted via SMARTS. Dischargers who certify and submit redacted information via SMARTS must include a general description of the redacted information and the basis for the redaction in the version that is submitted via SMARTS. Dischargers must submit complete and un-redacted versions of the information that are clearly labeled “CONFIDENTIAL” to the Regional Water Board within 30 days of the submittal of the redacted information. All information labeled “CONFIDENTIAL” will be maintained by the Water Boards in a separate, confidential file.

4. Schedule for Submitting PRDs - Existing Dischargers Under the Previous Permit.

a. Existing Dischargers with coverage under the previous permit shall continue coverage under the previous permit until July 1, 2015. All waste discharge requirements and conditions of the previous permit are in effect until July 1, 2015.

b. Existing Dischargers with coverage under the previous permit shall register for NOI coverage by July 1, 2015 or for NEC coverage by October 1, 2015. Existing Dischargers previously listed in Category 10 (Light Industry) of the previous permit, and continue to have no exposure to industrial activities and materials, have until October 1, 2015 to register for NEC coverage.

c. Existing Dischargers with coverage under the previous permit, that do not register for NOI coverage by July 1, 2015, may have their permit coverage administratively terminated as soon as July 1, 2015.

d. Existing Dischargers with coverage under the previous permit that are eligible for NEC coverage but do not register for NEC coverage by October 1, 2015 may have their permit coverage administratively terminated as soon as October 1, 2015.

e. Existing Dischargers shall continue to comply with the SWPPP requirements in State Water Board Order 97-03-DWQ up to, but no later than, June 30, 2015.

6 Existing Dischargers are Dischargers with an active Notice of Intent (permit coverage) under the previous permit (97-03-DWQ) prior to the effective date of this General Permit.
f. Existing Dischargers shall implement an updated SWPPP in accordance with Section X by July 1, 2015.

g. Existing Dischargers that submit a Notice of Termination (NOT) under the previous permit prior to July 1, 2015 and that receive NOT approval from the Regional Water Board are not subject to this General Permit unless they subsequently submitted new PRDs.

5. Schedule for Submitting PRDs - New Dischargers Obtaining Coverage On or After July 1, 2015

New Dischargers registering for NOI coverage on or after July 1, 2015 shall certify and submit PRDs via SMARTS at least seven (7) days prior to commencement of industrial activities or on July 1, 2015, whichever comes later.

a. New Dischargers registering for NEC coverage shall electronically certify and submit PRDs via SMARTS by October 1, 2015, or at least seven (7) days prior to commencement of industrial activities, whichever is later.

C. Termination and Changes to General Permit Coverage

1. Dischargers with NOI or NEC coverage shall request termination of coverage under this General Permit when either (a) operation of the facility has been transferred to another entity, (b) the facility has ceased operations, completed closure activities, and removed all industrial related pollutants, or (c) the facility’s operations have changed and are no longer subject to the General Permit. Dischargers shall certify and submit a Notice of Termination via SMARTS. Until a valid NOT is received, the Discharger remains responsible for compliance with this General Permit and payment of accrued annual fees.

2. Whenever there is a change to the facility location, the Discharger shall certify and submit new PRDs via SMARTS. When ownership changes, the prior Discharger (seller) must inform the new Discharger (buyer) of the General Permit applications and regulatory coverage requirements. The new Discharger must certify and submit new PRDs via SMARTS to obtain coverage under this General Permit.

3. Dischargers with NOI coverage where the facility qualifies for NEC coverage in accordance with Section XVII of this General Permit, may register for NEC coverage via SMARTS. Such Dischargers are not required to submit an NOT to cancel NOI coverage.

4. Dischargers with NEC coverage, where changes in the facility and/or facility operations occur, which result in NOI coverage instead of NEC coverage, shall register for NOI coverage via SMARTS. Such Dischargers are not required to submit an NOT to cancel NEC coverage.
5. Dischargers shall provide additional information supporting an NOT, or revise their PRDs via SMARTS, upon request by the Regional Water Board.

6. Dischargers that are denied approval of a submitted NOT or registration for NEC coverage by the Regional Water Board, shall continue compliance with this General Permit under their existing NOI coverage.

7. New Dischargers (Dischargers with no previous NOI or NEC coverage) shall register for NOI coverage if the Regional Water Board denies NEC coverage.

D. Preparation Requirements

1. The following documents shall be certified and submitted by the Discharger via SMARTS:
 a. Annual Reports (Section XVI) and SWPPPs (Section X);
 b. NOTs;
 c. Sampling Frequency Reduction Certification (Section XI.C.7);
 d. Level 1 ERA Reports (Section XII.C) prepared by a QISP;
 e. Level 2 ERA Technical Reports and Level 2 ERA Action Plans (Sections XII.D.1-2) prepared by a QISP; and,
 f. SWPPPs for inactive mining operations as described in Section XIII, signed (wet signature and license number) by a California licensed professional engineer.

2. The following documents shall be signed (wet signature and license number) by a California licensed professional engineer:
 a. Calculations for Dischargers subject to Subchapter N in accordance with Section XI.D;
 b. Notice of Non-Applicability (NONA) Technical Reports described in Section XX.C for facilities that are engineered and constructed to have contained the maximum historic precipitation event (or series of events) using the precipitation data collected from the National Oceanic and Atmospheric Agency’s website;
 c. NONA Technical Reports described in Section XX.C for facilities located in basins or other physical locations that are not tributaries or hydrologically connected to waters of the United States; and,
 d. SWPPPs for inactive mines described in Section XIII.
III. DISCHARGE PROHIBITIONS

A. All discharges of storm water to waters of the United States are prohibited except as specifically authorized by this General Permit or another NPDES permit.

B. Except for non-storm water discharges (NSWDs) authorized in Section IV, discharges of liquids or materials other than storm water, either directly or indirectly to waters of the United States, are prohibited unless authorized by another NPDES permit. Unauthorized NSWDs must be either eliminated or authorized by a separate NPDES permit.

C. Industrial storm water discharges and authorized NSWDs that contain pollutants that cause or threaten to cause pollution, contamination, or nuisance as defined in section 13050 of the Water Code, are prohibited.

D. Discharges that violate any discharge prohibitions contained in applicable Regional Water Board Water Quality Control Plans (Basin Plans), or statewide water quality control plans and policies are prohibited.

E. Discharges to ASBS are prohibited in accordance with the California Ocean Plan, unless granted an exception by the State Water Board and in compliance with the Special Protections contained in Resolution 2012-0012.

F. Industrial storm water discharges and NSWDs authorized by this General Permit that contain hazardous substances equal to or in excess of a reportable quantity listed in 40 Code of Federal Regulations sections 110.6, 117.21, or 302.6 are prohibited.

IV. AUTHORIZED NON-STORM WATER DISCHARGES (NSWDs)

A. The following NSWDs are authorized provided they meet the conditions of Section IV.B:

1. Fire-hydrant and fire prevention or response system flushing;

2. Potable water sources including potable water related to the operation, maintenance, or testing of potable water systems;

3. Drinking fountain water and atmospheric condensate including refrigeration, air conditioning, and compressor condensate;

4. Irrigation drainage and landscape watering provided all pesticides, herbicides and fertilizers have been applied in accordance with the manufacturer's label;

5. Uncontaminated natural springs, groundwater, foundation drainage, footing drainage;
6. Seawater infiltration where the seawater is discharged back into the source: and,

7. Incidental windblown mist from cooling towers that collects on rooftops or adjacent portions of your facility, but not intentional discharges from the cooling tower (e.g., “piped” cooling tower blowdown or drains).

B. The NSWDs identified in Section IV.A are authorized by this General Permit if the following conditions are met:

1. The authorized NSWDs are not in violation of any Regional Water Board Water Quality Control Plans (Basin Plans) or other requirements, or statewide water quality control plans or policies requirement;

2. The authorized NSWDs are not in violation of any municipal agency ordinance or requirements;

3. BMPs are included in the SWPPP and implemented to:
 a. Reduce or prevent the contact of authorized NSWDs with materials or equipment that are potential sources of pollutants;
 b. Reduce, to the extent practicable, the flow or volume of authorized NSWDs;
 c. Ensure that authorized NSWDs do not contain quantities of pollutants that cause or contribute to an exceedance of a water quality standards; and,
 d. Reduce or prevent discharges of pollutants in authorized NSWDs in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.

4. The Discharger conducts monthly visual observations (Section XI.A.1) of NSWDs and sources to ensure adequate BMP implementation and effectiveness; and,

5. The Discharger reports and describes all authorized NSWDs in the Annual Report.

C. Firefighting related discharges are not subject to this General Permit and are not subject to the conditions of Section IV.B. These discharges, however, may be subject to Regional Water Board enforcement actions under other sections of the Water Code. Firefighting related discharges that are contained and are later discharged may be subject to municipal agency ordinances and/or Regional Water Board requirements.

V. EFFLUENT LIMITATIONS
A. Dischargers shall implement BMPs that comply with the BAT/BCT requirements of this General Permit to reduce or prevent discharges of pollutants in their storm water discharge in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.

B. Industrial storm water discharges from facilities subject to storm water ELGs in Subchapter N shall not exceed those storm water ELGs. The ELGs for industrial storm water discharges subject to Subchapter N are in Attachment F of this General Permit.

C. Dischargers located within a watershed for which a Total Maximum Daily Load (TMDL) has been approved by U.S. EPA, shall comply with any applicable TMDL-specific permit requirements that have been incorporated into this General Permit in accordance with Section VII.A. Attachment E contains a reference list of potential TMDLs that may apply to Dischargers subject to this General Permit.

VI. RECEIVING WATER LIMITATIONS

A. Dischargers shall ensure that industrial storm water discharges and authorized NSWDs do not cause or contribute to an exceedance of any applicable water quality standards in any affected receiving water.

B. Dischargers shall ensure that industrial storm water discharges and authorized NSWDs do not adversely affect human health or the environment.

C. Dischargers shall ensure that industrial storm water discharges and authorized NSWDs do not contain pollutants in quantities that threaten to cause pollution or a public nuisance.

VII. TOTAL MAXIMUM DAILY LOADS (TMDLs)

A. Implementation

1. The State Water Board shall reopen and amend this General Permit, including Attachment E, the Fact Sheet and other applicable Permit provisions as necessary, in order to incorporate TMDL-specific permit requirements, as described in Findings 38 through 42. Once this General Permit is amended, Dischargers shall comply with the incorporated TMDL-specific permit requirements in accordance with any specified compliance schedule(s). TMDL-specific compliance dates that exceed the term of this General Permit may be included for reference, and are enforceable in the event that this General Permit is administratively extended or reissued.

2. The State Water Board may, at its discretion, reopen this General Permit to add TMDL-specific permit requirements to Attachment E, or to incorporate new TMDLs adopted during the term of this General Permit that include requirements applicable to Dischargers covered by this General Permit.
B. New Dischargers applying for NOI coverage under this General Permit that will be discharging to a water body with a 303(d) listed impairment are ineligible for coverage unless the Discharger submits data and/or information, prepared by a QISP, demonstrating that:

1. The Discharger has eliminated all exposure to storm water of the pollutant(s) for which the water body is impaired, has documented the procedures taken to prevent exposure onsite, and has retained such documentation with the SWPPP at the facility;

2. The pollutant for which the water body is impaired is not present at the Discharger’s facility, and the Discharger has retained documentation of this finding with the SWPPP at the facility; or,

3. The discharge of any listed pollutant will not cause or contribute to an exceedance of a water quality standard. This is demonstrated if: (1) the discharge complies with water quality standard at the point of discharge, or (2) if there are sufficient remaining waste load allocations in an approved TMDL and the discharge is controlled at least as stringently as similar discharges subject to that TMDL.

VIII. DISCHARGES SUBJECT TO THE CALIFORNIA OCEAN PLAN

A. Discharges to Ocean Waters

1. Dischargers with outfalls discharging to ocean waters that are subject to the model monitoring provisions of the California Ocean Plan shall develop and implement a monitoring plan in compliance with those provisions and any additional monitoring requirements established pursuant to Water Code section 13383. Dischargers who have not developed and implemented a monitoring program in compliance with the California Ocean Plan’s model monitoring provisions by July 1, 2015, or seven (7) days prior to commencing of operations, whichever is later, are ineligible to obtain coverage under this General Permit.

2. Dischargers are ineligible for the methods and exceptions provided in Section XI.C of this General permit for any of the outfalls discharging to ocean waters subject to the model monitoring provisions of the California Ocean Plan.

B. Discharge Granted an Exceptions for Areas of Special Biological Significance (ASBS)
Dischargers who were granted an exception to the California Ocean Plan prohibition against direct discharges of waste to an ASBS pursuant to Resolution 2012-0012\(^7\) amended by Resolution 2012-0031\(^8\) shall comply with the conditions and requirements set forth in Attachment G of this General Permit. Any Discharger that applies for and is granted an exception to the California Ocean Plan prohibition after July 1, 2013 shall comply with the conditions and requirements set forth in the granted exception.

IX. TRAINING QUALIFICATIONS

A. General

1. A Qualified Industrial Storm Water Practitioner (QISP) is a person (either the Discharger or a person designated by the Discharger) who has completed a State Water Board-sponsored or approved QISP training course\(^9\), and has registered as a QISP via SMARTS. Upon completed registration the State Water Board will issue a QISP identification number.

2. The Executive Director of the State Water Board or an Executive Officer of a Regional Water Board may rescind any QISP’s registration if it is found that the QISP has repeatedly demonstrated an inadequate level of performance in completing the QISP requirements in this General Permit. An individual whose QISP registration has been rescinded may request that the State Water Board review the rescission. Any request for review must be received by the State Water Board no later than 30 days of the date that the individual received written notice of the rescission.

3. Dischargers with Level 1 status shall:

 a. Designate a person to be the facility's QISP and ensure that this person has attended and satisfactorily completed the State Water Board-sponsored or approved QISP training course.

 b. Ensure that the facility’s designated QISP provides sufficient training to the appropriate team members assigned to perform activities required by this General Permit.

\(^9\) A specialized self-guided State Water Board-sponsored registration and training program will be available as an option for CPBELSG licensed professional civil, mechanical, industrial, and chemical engineers and professional geologists by the effective date of this General Permit.
X. Storm Water Pollution Prevention Plan (SWPPP)

A. SWPPP Elements

Dischargers shall develop and implement a site-specific SWPPP for each
industrial facility covered by this General Permit that shall contain the following
elements, as described further in this Section:\(^{10}\):

1. Facility Name and Contact Information;
2. Site Map;
3. List of Industrial Materials;
4. Description of Potential Pollution Sources;
5. Assessment of Potential Pollutant Sources;
6. Minimum BMPs;
7. Advanced BMPs, if applicable;
8. Monitoring Implementation Plan;
9. Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation);
and,
10. Date that SWPPP was Initially Prepared and the Date of Each SWPPP
Amendment, if Applicable.

B. SWPPP Implementation and Revisions

All Dischargers are required to implement their SWPPP by July 1, 2015 or
upon commencement of industrial activity. The Discharger shall:

1. Revise their on-site SWPPP whenever necessary;
2. Certify and submit via SMARTS their SWPPP within 30 days whenever
the SWPPP contains significant revision(s); and,
3. With the exception of significant revisions, the Discharger is not required
to certify and submit via SMARTS their SWPPP revisions more than once
every three (3) months in the reporting year.

\(^{10}\) Appendix 1 (SWPPP Checklist) of this General Permit is provided to assist the Discharger in including information
required in the SWPPP. This checklist is not required to be used.
C. SWPPP Performance Standards

1. The Discharger shall ensure a SWPPP is prepared to:

 a. Identify and evaluate all sources of pollutants that may affect the quality of industrial storm water discharges and authorized NSWDs;

 b. Identify and describe the minimum BMPs (Section X.H.1) and any advanced BMPs (Section X.H.2) implemented to reduce or prevent pollutants in industrial storm water discharges and authorized NSWDs. BMPs shall be selected to achieve compliance with this General Permit; and,

 c. Identify and describe conditions or circumstances which may require future revisions to be made to the SWPPP.

2. The Discharger shall prepare a SWPPP in accordance with all applicable SWPPP requirements of this Section. A copy of the SWPPP shall be maintained at the facility.

D. Planning and Organization

1. Pollution Prevention Team

 Each facility must have a Pollution Prevention Team established and responsible for assisting with the implementation of the requirements in this General Permit. The Discharger shall include in the SWPPP detailed information about its Pollution Prevention Team including:

 a. The positions within the facility organization (collectively, team members) who assist in implementing the SWPPP and conducting all monitoring requirements in this General Permit;

 b. The responsibilities, duties, and activities of each of the team members; and,

 c. The procedures to identify alternate team members to implement the SWPPP and conduct required monitoring when the regularly assigned team members are temporarily unavailable (due to vacation, illness, out of town business, or other absences).

2. Other Requirements and Existing Facility Plans

 a. The Discharger shall ensure its SWPPP is developed, implemented, and revised as necessary to be consistent with any applicable municipal, state, and federal requirements that pertain to the requirements in this General Permit.

 b. The Discharger may include in their SWPPP the specific elements of existing plans, procedures, or regulatory compliance documents that
contain storm water-related BMPs or otherwise relate to the requirements of this General Permit.

c. The Discharger shall properly reference the original sources for any elements of existing plans, procedures, or regulatory compliance documents included as part of their SWPPP and shall maintain a copy of the documents at the facility as part of the SWPPP.

d. The Discharger shall document in their SWPPP the facility’s scheduled operating hours as defined in Attachment C. Scheduled facility operating hours that would be considered irregular (temporary, intermittent, seasonal, weather dependent, etc.) shall also be documented in the SWPPP.

E. Site Map

1. The Discharger shall prepare a site map that includes notes, legends, a north arrow, and other data as appropriate to ensure the map is clear, legible and understandable.

2. The Discharger may provide the required information on multiple site maps.

3. The Discharger shall include the following information on the site map:

a. The facility boundary, storm water drainage areas within the facility boundary, and portions of any drainage area impacted by discharges from surrounding areas. Include the flow direction of each drainage area, on-facility surface water bodies, areas of soil erosion, and location(s) of nearby water bodies (such as rivers, lakes, wetlands, etc.) or municipal storm drain inlets that may receive the facility’s industrial storm water discharges and authorized NSWDs;

b. Locations of storm water collection and conveyance systems, associated discharge locations, and direction of flow. Include any sample locations if different than the identified discharge locations;

c. Locations and descriptions of structural control measures11 that affect industrial storm water discharges, authorized NSWDs, and/or run-on;

d. Identification of all impervious areas of the facility, including paved areas, buildings, covered storage areas, or other roofed structures;

11 Examples of structural control measures are catch basins, berms, detention ponds, secondary containment, oil/water separators, diversion barriers, etc.
e. Locations where materials are directly exposed to precipitation and the locations where identified significant spills or leaks (Section X.G.1.d) have occurred; and

f. Areas of industrial activity subject to this General Permit. Identify all industrial storage areas and storage tanks, shipping and receiving areas, fueling areas, vehicle and equipment storage/maintenance areas, material handling and processing areas, waste treatment and disposal areas, dust or particulate generating areas, cleaning and material reuse areas, and other areas of industrial activity that may have potential pollutant sources.

F. List of Industrial Materials

The Discharger shall ensure the SWPPP includes a list of industrial materials handled at the facility, and the locations where each material is stored, received, shipped, and handled, as well as the typical quantities and handling frequency.

G. Potential Pollutant Sources

1. Description of Potential Pollutant Sources

 a. Industrial Processes

 The Discharger shall ensure the SWPPP describes each industrial process including: manufacturing, cleaning, maintenance, recycling, disposal, and any other activities related to the process. The type, characteristics, and approximate quantity of industrial materials used in or resulting from the process shall be included. Areas protected by containment structures and the corresponding containment capacity shall be identified and described.

 b. Material Handling and Storage Areas

 The Discharger shall ensure the SWPPP describes each material handling and storage area, including: the type, characteristics, and quantity of industrial materials handled or stored; the shipping, receiving, and loading procedures; the spill or leak prevention and response procedures; and the areas protected by containment structures and the corresponding containment capacity.

 c. Dust and Particulate Generating Activities

 The Discharger shall ensure the SWPPP describes all industrial activities that generate a significant amount of dust or particulate that may be deposited within the facility boundaries. The SWPPP shall describe such industrial activities, including the discharge locations, the source type, and the characteristics of the dust or particulate pollutant.
d. Significant Spills and Leaks

The Discharger shall:

i. Evaluate the facility for areas where spills and leaks can likely occur;

ii. Ensure the SWPPP includes:

 a) A list of any industrial materials that have spilled or leaked in significant quantities and have discharged from the facility’s storm water conveyance system within the previous five-year period;

 b) A list of any toxic chemicals identified in 40 Code of Federal Regulations section 302 that have been discharged from the facilities’ storm water conveyance system as reported on U.S. EPA Form R, as well as oil and hazardous substances in excess of reportable quantities (40 C.F.R. §§ 110, 117, and 302) that have discharged from the facility’s storm water conveyance system within the previous five-year period;

 c) A list of any industrial materials that have spilled or leaked in significant quantities and had the potential to be discharged from the facility’s storm water conveyance system within the previous five-year period; and,

iii. Ensure that for each discharge or potential discharge listed above the SWPPP includes the location, characteristics, and approximate quantity of the materials spilled or leaked; approximate quantity of the materials discharged from the facility’s storm water conveyance system; the cleanup or remedial actions that have occurred or are planned; the approximate remaining quantity of materials that have the potential to be discharged; and the preventive measures taken to ensure spills or leaks of the material do not reoccur.

e. NSWDs

The Discharger shall:

i. Ensure the SWPPP includes an evaluation of the facility that identifies all NSWDs, sources, and drainage areas;

ii. Ensure the SWPPP includes an evaluation of all drains (inlets and outlets) that identifies connections to the storm water conveyance system;

iii. Ensure the SWPPP includes a description of how all unauthorized NSWDs have been eliminated; and,
iv. Ensure all NSWDs are described in the SWPPP. This description shall include the source, quantity, frequency, and characteristics of the NSWDs, associated drainage area, and whether it is an authorized or unauthorized NSWD in accordance with Section IV.

f. Erodible Surfaces

The Discharger shall ensure the SWPPP includes a description of the facility locations where soil erosion may be caused by industrial activity, contact with storm water, authorized and unauthorized NSWDs, or runoff from areas surrounding the facility.

2. Assessment of Potential Pollutant Sources

a. The Discharger shall ensure that the SWPPP includes a narrative assessment of all areas of industrial activity with potential industrial pollutant sources. At a minimum, the assessment shall include:

i. The areas of the facility with likely sources of pollutants in industrial storm water discharges and authorized NSWDs;

ii. The pollutants likely to be present in industrial storm water discharges and authorized NSWDs;

iii. The approximate quantity, physical characteristics (e.g., liquid, powder, solid, etc.), and locations of each industrial material handled, produced, stored, recycled, or disposed;

iv. The degree to which the pollutants associated with those materials may be exposed to, and mobilized by contact with, storm water;

v. The direct and indirect pathways by which pollutants may be exposed to storm water or authorized NSWDs;

vi. All sampling, visual observation, and inspection records;

vii. The effectiveness of existing BMPs to reduce or prevent pollutants in industrial storm water discharges and authorized NSWDs;

viii. The estimated effectiveness of implementing, to the extent feasible, minimum BMPs to reduce or prevent pollutants in industrial storm water discharges and authorized NSWDs; and,

ix. The identification of the industrial pollutants related to the receiving waters with 303(d) listed impairments identified in Appendix 3 or approved TMDLs that may be causing or contributing to an exceedance of a water quality standard in the receiving waters.

b. Based upon the assessment above, Dischargers shall identify in the SWPPP any areas of the facility where the minimum BMPs described in
subsection H.1 below will not adequately reduce or prevent pollutants in storm water discharges in compliance with Section V.A. Dischargers shall identify any advanced BMPs, as described in subsection H.2 below, for those areas.

c. Based upon the assessment above, Dischargers shall identify any drainage areas with no exposure to industrial activities and materials in accordance with the definitions in Section XVII.

d. Based upon the assessment above, Dischargers shall identify any additional parameters, beyond the required parameters in Section XI.B.6 that indicate the presence of pollutants in industrial storm water discharges.

H. Best Management Practices (BMPs)

1. Minimum BMPs

The Discharger shall, to the extent feasible, implement and maintain all of the following minimum BMPs to reduce or prevent pollutants in industrial storm water discharges.\(^{12}\)

a. Good Housekeeping

The Discharger shall:

i. Observe all outdoor areas associated with industrial activity; including storm water discharge locations, drainage areas, conveyance systems, waste handling/disposal areas, and perimeter areas impacted by off-facility materials or storm water run-on to determine housekeeping needs. Any identified debris, waste, spills, tracked materials, or leaked materials shall be cleaned and disposed of properly;

ii. Minimize or prevent material tracking;

iii. Minimize dust generated from industrial materials or activities;

iv. Ensure that all facility areas impacted by rinse/wash waters are cleaned as soon as possible;

v. Cover all stored industrial materials that can be readily mobilized by contact with storm water;

\(^{12}\) For the purposes of this General Permit, the requirement to implement BMPs “to the extent feasible” requires Dischargers to select, design, install and implement BMPs that reduce or prevent discharges of pollutants in their storm water discharge in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.
vi. Contain all stored non-solid industrial materials or wastes (e.g., particulates, powders, shredded paper, etc.) that can be transported or dispersed by the wind or contact with storm water;

vii. Prevent disposal of any rinse/wash waters or industrial materials into the storm water conveyance system;

viii. Minimize storm water discharges from non-industrial areas (e.g., storm water flows from employee parking area) that contact industrial areas of the facility; and,

ix. Minimize authorized NSWDs from non-industrial areas (e.g., potable water, fire hydrant testing, etc.) that contact industrial areas of the facility.

b. Preventive Maintenance

The Discharger shall:

i. Identify all equipment and systems used outdoors that may spill or leak pollutants;

ii. Observe the identified equipment and systems to detect leaks, or identify conditions that may result in the development of leaks;

iii. Establish an appropriate schedule for maintenance of identified equipment and systems; and,

iv. Establish procedures for prompt maintenance and repair of equipment, and maintenance of systems when conditions exist that may result in the development of spills or leaks.

c. Spill and Leak Prevention and Response

The Discharger shall:

i. Establish procedures and/or controls to minimize spills and leaks;

ii. Develop and implement spill and leak response procedures to prevent industrial materials from discharging through the storm water conveyance system. Spilled or leaked industrial materials shall be cleaned promptly and disposed of properly;

iii. Identify and describe all necessary and appropriate spill and leak response equipment, location(s) of spill and leak response equipment, and spill or leak response equipment maintenance procedures; and,

iv. Identify and train appropriate spill and leak response personnel.

d. Material Handling and Waste Management
The Discharger shall:

i. Prevent or minimize handling of industrial materials or wastes that can be readily mobilized by contact with storm water during a storm event;

ii. Contain all stored non-solid industrial materials or wastes (e.g., particulates, powders, shredded paper, etc.) that can be transported or dispersed by the wind or contact with storm water;

iii. Cover industrial waste disposal containers and industrial material storage containers that contain industrial materials when not in use;

iv. Divert run-on and storm water generated from within the facility away from all stockpiled materials;

v. Clean all spills of industrial materials or wastes that occur during handling in accordance with the spill response procedures (Section X.H.1.c); and,

vi. Observe and clean as appropriate, any outdoor material or waste handling equipment or containers that can be contaminated by contact with industrial materials or wastes.

e. Erosion and Sediment Controls

For each erodible surface facility location identified in the SWPPP (Section X.G.1.f), the Discharger shall:

i. Implement effective wind erosion controls;

ii. Provide effective stabilization for inactive areas, finished slopes, and other erodible areas prior to a forecasted storm event;

iii. Maintain effective perimeter controls and stabilize all site entrances and exits to sufficiently control discharges of erodible materials from discharging or being tracked off the site;

iv. Divert run-on and storm water generated from within the facility away from all erodible materials; and,

v. If sediment basins are implemented, ensure compliance with the design storm standards in Section X.H.6.

f. Employee Training Program

The Discharger shall:

i. Ensure that all team members implementing the various compliance activities of this General Permit are properly trained to implement the requirements of this General Permit, including but not limited to: BMP implementation, BMP effectiveness evaluations, visual observations,
and monitoring activities. If a Discharger enters Level 1 status, appropriate team members shall be trained by a QISP;

ii. Prepare or acquire appropriate training manuals or training materials;

iii. Identify which personnel need to be trained, their responsibilities, and the type of training they shall receive;

iv. Provide a training schedule; and,

v. Maintain documentation of all completed training classes and the personnel that received training in the SWPPP.

g. Quality Assurance and Record Keeping

The Discharger shall:

i. Develop and implement management procedures to ensure that appropriate staff implements all elements of the SWPPP, including the Monitoring Implementation Plan;

ii. Develop a method of tracking and recording the implementation of BMPs identified in the SWPPP; and

iii. Maintain the BMP implementation records, training records, and records related to any spills and clean-up related response activities for a minimum of five (5) years (Section XXI.J.4).

2. Advanced BMPs

a. In addition to the minimum BMPs described in Section X.H.1, the Discharger shall, to the extent feasible, implement and maintain any advanced BMPs identified in Section X.G.2.b, necessary to reduce or prevent discharges of pollutants in its storm water discharge in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.

b. Advanced BMPs may include one or more of the following BMPs:

i. Exposure Minimization BMPs

These include storm resistant shelters (either permanent or temporary) that prevent the contact of storm water with the identified industrial materials or area(s) of industrial activity.

ii. Storm Water Containment and Discharge Reduction BMPs

These include BMPs that divert, infiltrate, reuse, contain, retain, or reduce the volume of storm water runoff. Dischargers are
encouraged to utilize BMPs that infiltrate or reuse storm water where feasible.

iii. Treatment Control BMPs

This is the implementation of one or more mechanical, chemical, biologic, or any other treatment technology that will meet the treatment design standard.

iv. Other Advanced BMPs

Any additional BMPs not described in subsections b.i through iii above that are necessary to meet the effluent limitations of this General Permit.

3. Temporary Suspension of Industrial Activities

For facilities that plan to temporarily suspend industrial activities for ten (10) or more consecutive calendar days during a reporting year, the Discharger may also suspend monitoring if it is infeasible to conduct monitoring while industrial activities are suspended (e.g., the facility is not staffed, or the facility is remote or inaccessible) and the facility has been stabilized. The Discharger shall include in the SWPPP the BMPs necessary to achieve compliance with this General Permit during the temporary suspension of the industrial activity. Once all necessary BMPs have been implemented to stabilize the facility, the Discharger is not required to:

a. Perform monthly visual observations (Section XI.A.1.a.); or,

b. Perform sampling and analysis (Section XI.B.) if it is infeasible to do so (e.g. facility is remotely located).

The Discharger shall upload via SMARTS (7) seven calendar days prior to the planned temporary suspension of industrial activities:

a. SWPPP revisions specifically addressing the facility stabilization BMPs;

b. The justification for why monitoring is infeasible at the facility during the period of temporary suspension of industrial activities;

c. The date the facility is fully stabilized for temporary suspension of industrial activities; and,

d. The projected date that industrial activities will resume at the facility.
Upon resumption of industrial activities at the facility, the Discharger shall, via SMARTS, confirm and/or update the date the facility’s industrial activities have resumed. At this time, the Discharger is required to resume all compliance activities under this General Permit.

The Regional Water Boards may review the submitted information pertaining to the temporary suspension of industrial activities. Upon review, the Regional Water Board may request revisions or reject the Discharger’s request to temporarily suspend monitoring.

4. BMP Descriptions

 a. The Discharger shall ensure that the SWPPP identifies each BMP being implemented at the facility, including:

 i. The pollutant(s) that the BMP is designed to reduce or prevent in industrial storm water discharges;

 ii. The frequency, time(s) of day, or conditions when the BMP is scheduled for implementation;

 iii. The locations within each area of industrial activity or industrial pollutant source where the BMP shall be implemented;

 iv. The individual and/or position responsible for implementing the BMP;

 v. The procedures, including maintenance procedures, and/or instructions to implement the BMP effectively;

 vi. The equipment and tools necessary to implement the BMP effectively; and,

 vii. The BMPs that may require more frequent visual observations beyond the monthly visual observations as described in Section XI.A.1.

 b. The Discharger shall ensure that the SWPPP identifies and justifies each minimum BMP or applicable advanced BMP not being implemented at the facility because they do not reflect best industry practice considering technological availability and economic practicability and achievability.

 c. The Discharger shall identify any BMPs described in subsection a above that are implemented in lieu of any of the minimum or applicable advanced BMPs.

5. BMP Summary Table

 The Discharger shall prepare a table summarizing each identified area of industrial activity, the associated industrial pollutant sources, the industrial pollutants, and the BMPs being implemented.
6. Design Storm Standards for Treatment Control BMPs

All new treatment control BMPs employed by the Discharger to comply with Section X.H.2 Advanced BMPs and new sediment basins installed after the effective date of this order shall be designed to comply with design storm standards in this Section, except as provided in an Industrial Activity BMP Demonstration (Section XII.D.2.a). A Factor of Safety shall be incorporated into the design of all treatment control BMPs to ensure that storm water is sufficiently treated throughout the life of the treatment control BMPs. The design storm standards for treatment control BMPs are as follows:

a. Volume-based BMPs: The Discharger, at a minimum, shall calculate13 the volume to be treated using one of the following methods:

i. The volume of runoff produced from an 85th percentile 24-hour storm event, as determined from local, historical rainfall records;

ii. The volume of runoff produced by the 85th percentile 24-hour storm event, determined as the maximized capture runoff volume for the facility, from the formula recommended in the Water Environment Federation’s Manual of Practice;14 or,

iii. The volume of annual runoff required to achieve 80\% or more treatment, determined in accordance with the methodology set forth in the latest edition of California Stormwater Best Management Practices Handbook15, using local, historical rainfall records.

b. Flow-based BMPs: The Discharger shall calculate the flow needed to be treated using one of the following methods:

i. The maximum flow rate of runoff produced from a rainfall intensity of at least 0.2 inches per hour for each hour of a storm event;

ii. The maximum flow rate of runoff produced by the 85th percentile hourly rainfall intensity, as determined from local historical rainfall records, multiplied by a factor of two; or,

iii. The maximum flow rate of runoff, as determined using local historical rainfall records, that achieves approximately the same reduction in total pollutant loads as would be achieved by treatment of the 85th percentile hourly rainfall intensity multiplied by a factor of two.

13 All hydrologic calculations shall be certified by a California licensed professional engineer in accordance with the Professional Engineers Act (Bus. & Prof. Code § 6700, et seq).

Order 2014-0057-DWQ 36
I. MONITORING IMPLEMENTATION PLAN

The Discharger shall prepare a Monitoring Implementation Plan in accordance with the requirements of this General Permit. The Monitoring Implementation Plan shall be included in the SWPPP and shall include the following items:

1. An identification of team members assigned to conduct the monitoring requirements;

2. A description of the following in accordance with Attachment H:
 a. Discharge locations;
 b. Visual observation procedures; and,
 c. Visual observation response procedures related to monthly visual observations and sampling event visual observations.

3. Justifications for any of the following that are applicable to the facility:
 a. Alternative discharge locations in accordance with Section XI.C.3;
 b. Representative Sampling Reduction in accordance with Section XI.C.4; or,
 c. Qualified Combined Samples in accordance with Section XI.C.5.

4. Procedures for field instrument calibration instructions, including calibration intervals specified by the manufacturer; and,

5. An example Chain of Custody form used when handling and shipping water quality samples to the lab.

XI. MONITORING

A. Visual Observations

1. Monthly Visual Observations
 a. At least once per calendar month, the Discharger shall visually observe each drainage area for the following:
 i. The presence or indications of prior, current, or potential unauthorized NSWDs and their sources;
 ii. Authorized NSWDs, sources, and associated BMPs to ensure compliance with Section IV.B.3; and,
iii. Outdoor industrial equipment and storage areas, outdoor industrial activities areas, BMPs, and all other potential source of industrial pollutants.

b. The monthly visual observations shall be conducted during daylight hours of scheduled facility operating hours and on days without precipitation.

c. The Discharger shall provide an explanation in the Annual Report for uncompleted monthly visual observations.

2. Sampling Event Visual Observations

Sampling event visual observations shall be conducted at the same time sampling occurs at a discharge location. At each discharge location where a sample is obtained, the Discharger shall observe the discharge of storm water associated with industrial activity.

a. The Discharger shall ensure that visual observations of storm water discharged from containment sources (e.g. secondary containment or storage ponds) are conducted at the time that the discharge is sampled.

b. Any Discharger employing volume-based or flow-based treatment BMPs shall sample any bypass that occurs while the visual observations and sampling of storm water discharges are conducted.

c. The Discharger shall visually observe and record the presence or absence of floating and suspended materials, oil and grease, discolorations, turbidity, odors, trash/debris, and source(s) of any discharged pollutants.

d. In the event that a discharge location is not visually observed during the sampling event, the Discharger shall record which discharge locations were not observed during sampling or that there was no discharge from the discharge location.

e. The Discharger shall provide an explanation in the Annual Report for uncompleted sampling event visual observations.

3. Visual Observation Records

The Discharger shall maintain records of all visual observations. Records shall include the date, approximate time, locations observed, presence and probable source of any observed pollutants, name of person(s) that conducted the observations, and any response actions and/or additional SWPPP revisions necessary in response to the visual observations.
4. The Discharger shall revise BMPs as necessary when the visual observations indicate pollutant sources have not been adequately addressed in the SWPPP.

B. Sampling and Analysis

1. A Qualifying Storm Event (QSE) is a precipitation event that:
 a. Produces a discharge for at least one drainage area; and,
 b. Is preceded by 48 hours with no discharge from any drainage area.

2. The Discharger shall collect and analyze storm water samples from two (2) QSEs within the first half of each reporting year (July 1 to December 31), and two (2) QSEs within the second half of each reporting year (January 1 to June 30).

3. Compliance Group Participants are only required to collect and analyze storm water samples from one (1) QSE within the first half of each reporting year (July 1 to December 31) and one (1) QSE within the second half of the reporting year (January 1 to June 30).

4. Except as provided in Section XI.C.4 (Representative Sampling Reduction), samples shall be collected from each drainage area at all discharge locations. The samples must be:
 a. Representative of storm water associated with industrial activities and any commingled authorized NSWDs; or,
 b. Associated with the discharge of contained storm water.

5. Samples from each discharge location shall be collected within four (4) hours of:
 a. The start of the discharge; or,
 b. The start of facility operations if the QSE occurs within the previous 12-hour period (e.g., for storms with discharges that begin during the night for facilities with day-time operating hours). Sample collection is required during scheduled facility operating hours and when sampling conditions are safe in accordance with Section XI.C.6.a.ii.

6. The Discharger shall analyze all collected samples for the following parameters:
 a. Total suspended solids (TSS) and oil and grease (O&G);
 b. pH (see Section XI.C.2);
c. Additional parameters identified by the Discharger on a facility-specific basis that serve as indicators of the presence of all industrial pollutants identified in the pollutant source assessment (Section X.G.2). These additional parameters may be modified (added or removed) in accordance with any updated SWPPP pollutant source assessment;

d. Additional applicable parameters listed in Table 1 below. These parameters are dependent on the facility Standard Industrial Classification (SIC) code(s);

e. Additional applicable industrial parameters related to receiving waters with 303(d) listed impairments or approved TMDLs based on the assessment in Section X.G.2.a.ix. Test methods with lower detection limits may be necessary when discharging to receiving waters with 303(d) listed impairments or TMDLs;

f. Additional parameters required by the Regional Water Board. The Discharger shall contact its Regional Water Board to determine appropriate analytical test methods for parameters not listed in Table 2 below. These analytical test methods will be added to SMARTS; and

g. For discharges subject to Subchapter N, additional parameters specifically required by Subchapter N. If the discharge is subject to ELGs, the Dischargers shall contact the Regional Water Board to determine appropriate analytical methods for parameters not listed in Table 2 below.

7. The Discharger shall select corresponding NALs, analytical test methods, and reporting units from the list provided in Table 2 below. SMARTS will be updated over time to add additional acceptable analytical test methods. Dischargers may propose an analytical test method for any parameter or pollutant that does not have an analytical test method specified in Table 2 or in SMARTS. Dischargers may also propose analytical test methods with substantially similar or more stringent method detection limits than existing approved analytical test methods. Upon approval, the analytical test method will be added to SMARTS.

8. The Discharger shall ensure that the collection, preservation and handling of all storm water samples are in accordance with Attachment H, Storm Water Sample Collection and Handling Instructions.

9. Samples from different discharge locations shall not be combined or composited except as allowed in Section XI.C.5 (Qualified Combined Samples).

10. The Discharger shall ensure that all laboratory analyses are conducted according to test procedures under 40 Code of Federal Regulations part 136, including the observation of holding times, unless other test procedures have been specified in this General Permit or by the Regional Water Board.
11. Sampling Analysis Reporting

a. The Discharger shall submit all sampling and analytical results for all individual or Qualified Combined Samples via SMARTS within 30 days of obtaining all results for each sampling event.

b. The Discharger shall provide the method detection limit when an analytical result from samples taken is reported by the laboratory as a “non-detect” or less than the method detection limit. A value of zero shall not be reported.

c. The Discharger shall provide the analytical result from samples taken that is reported by the laboratory as below the minimum level (often referred to as the reporting limit) but above the method detection limit.

Reported analytical results will be averaged automatically by SMARTS. For any calculations required by this General Permit, SMARTS will assign a value of zero (0) for all results less than the minimum level as reported by the laboratory.

TABLE 1: Additional Analytical Parameters

<table>
<thead>
<tr>
<th>SIC code</th>
<th>SIC code Description</th>
<th>Parameters*</th>
</tr>
</thead>
<tbody>
<tr>
<td>102X</td>
<td>Copper Ores</td>
<td>COD; N+N</td>
</tr>
<tr>
<td>12XX</td>
<td>Coal Mines</td>
<td>Al; Fe</td>
</tr>
<tr>
<td>144X</td>
<td>Sand and Gravel</td>
<td>N+N</td>
</tr>
<tr>
<td>207X</td>
<td>Fats and Oils</td>
<td>BOD; COD; N+N</td>
</tr>
<tr>
<td>2421</td>
<td>Sawmills & Planning Mills</td>
<td>COD; Zn</td>
</tr>
<tr>
<td>2426</td>
<td>Hardwood Dimension</td>
<td>COD</td>
</tr>
<tr>
<td>2429</td>
<td>Special Product Sawmills</td>
<td>COD</td>
</tr>
<tr>
<td>243X</td>
<td>Millwork, Veneer, Plywood</td>
<td>COD</td>
</tr>
<tr>
<td>244X</td>
<td>Wood Containers</td>
<td>COD</td>
</tr>
<tr>
<td>245X</td>
<td>Wood Buildings & Mobile Homes</td>
<td>COD</td>
</tr>
<tr>
<td>2491</td>
<td>Wood Preserving</td>
<td>As; Cu</td>
</tr>
<tr>
<td>2493</td>
<td>Reconstituted Wood Products</td>
<td>COD</td>
</tr>
<tr>
<td>263X</td>
<td>Paperboard Mills</td>
<td>COD</td>
</tr>
<tr>
<td>281X</td>
<td>Industrial Inorganic Chemicals</td>
<td>Al; Fe; N+N</td>
</tr>
<tr>
<td>282X</td>
<td>Plastic Materials, Synthetics</td>
<td>Zn</td>
</tr>
<tr>
<td>284X</td>
<td>Soaps, Detergents, Cosmetics</td>
<td>N+N; Zn</td>
</tr>
<tr>
<td>287X</td>
<td>Fertilizers, Pesticides, etc.</td>
<td>Fe; N+N; Pb; Zn; P</td>
</tr>
<tr>
<td>301X</td>
<td>Tires, Inner Tubes</td>
<td>Zn</td>
</tr>
<tr>
<td>302X</td>
<td>Rubber and Plastic Footwear</td>
<td>Zn</td>
</tr>
<tr>
<td>305X</td>
<td>Rubber & Plastic Sealers & Hoses</td>
<td>Zn</td>
</tr>
<tr>
<td>306X</td>
<td>Misc. Fabricated Rubber Products</td>
<td>Zn</td>
</tr>
<tr>
<td>325X</td>
<td>Structural Clay Products</td>
<td>Al</td>
</tr>
<tr>
<td>326X</td>
<td>Pottery & Related Products</td>
<td>Al</td>
</tr>
<tr>
<td>3297</td>
<td>Non-Clay Refractories</td>
<td>Al</td>
</tr>
<tr>
<td>327X</td>
<td>Concrete, Gypsum, Plaster Products (Except 3274)</td>
<td>Fe</td>
</tr>
<tr>
<td>3295</td>
<td>Minerals & Earths</td>
<td>Fe</td>
</tr>
<tr>
<td>331X</td>
<td>Steel Works, Blast Furnaces, Rolling and Finishing Mills</td>
<td>Al; Zn</td>
</tr>
<tr>
<td>332X</td>
<td>Iron and Steel Foundries</td>
<td>Al; Cu; Fe; Zn</td>
</tr>
<tr>
<td>335X</td>
<td>Metal Rolling, Drawing, Extruding</td>
<td>Cu; Zn</td>
</tr>
<tr>
<td>SIC</td>
<td>Industry Type</td>
<td>Parameters Required</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>336X</td>
<td>Nonferrous Foundries (Casting)</td>
<td>Cu; Zn</td>
</tr>
<tr>
<td>34XX</td>
<td>Fabricated Metal Products (Except 3479)</td>
<td>Zn; N+N; Fe; Al</td>
</tr>
<tr>
<td>3479</td>
<td>Coating and Engraving</td>
<td>Zn; N+N</td>
</tr>
<tr>
<td>4953</td>
<td>Hazardous Waste Facilities</td>
<td>NH3; Mg; COD; As; Cn; Pb; Hg; Se; Ag</td>
</tr>
<tr>
<td>44XX</td>
<td>Water Transportation</td>
<td>Al; Fe; Pb; Zn</td>
</tr>
<tr>
<td>45XX</td>
<td>Air Transportation Facilities¹⁶</td>
<td>BOD; COD; NH3</td>
</tr>
<tr>
<td>4911</td>
<td>Steam Electric Power Generating Facilities</td>
<td>Fe</td>
</tr>
<tr>
<td>4953</td>
<td>Landfills and Land Application Facilities</td>
<td>Fe</td>
</tr>
<tr>
<td>5015</td>
<td>Dismantling or Wrecking Yards</td>
<td>Fe</td>
</tr>
<tr>
<td>5093</td>
<td>Scrap and Waste Materials (not including source-</td>
<td>Fe; Pb; Al; Zn; COD</td>
</tr>
<tr>
<td></td>
<td>separated recycling)</td>
<td></td>
</tr>
</tbody>
</table>

¹⁶ Only airports (SIC 4512-4581) where a single Discharger, or a combination of permitted facilities use more than 100,000 gallons of glycol-based deicing chemicals and/or 100 tons or more of urea on an average annual basis, are required to monitor these parameters for those outfalls that collect runoff from areas where deicing activities occur.

<table>
<thead>
<tr>
<th>Parameter Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag – Silver</td>
</tr>
<tr>
<td>Al – Aluminum</td>
</tr>
<tr>
<td>As – Arsenic</td>
</tr>
<tr>
<td>BOD – Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>Cd – Cadmium</td>
</tr>
<tr>
<td>Cn – Cyanide</td>
</tr>
<tr>
<td>COD – Chemical Oxygen Demand</td>
</tr>
<tr>
<td>Cu – Copper</td>
</tr>
<tr>
<td>Fe – Iron</td>
</tr>
<tr>
<td>Hg – Mercury</td>
</tr>
</tbody>
</table>
Table 2: Parameter NAL Values, Test Methods, and Reporting Units

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST METHOD</th>
<th>REPORTING UNITS</th>
<th>ANNUAL NAL</th>
<th>INSTANTANEOUS MAXIMUM NAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH*</td>
<td>See Section XI.C.2</td>
<td>pH units</td>
<td>N/A</td>
<td>Less than 6.0 Greater than 9.0</td>
</tr>
<tr>
<td>Suspended Solids (TSS)*, Total</td>
<td>SM 2540-D</td>
<td>mg/L</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>Oil & Grease (O&G)*, Total</td>
<td>EPA 1664A</td>
<td>mg/L</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Zinc, Total (H)</td>
<td>EPA 200.8</td>
<td>mg/L</td>
<td>0.26**</td>
<td></td>
</tr>
<tr>
<td>Copper, Total (H)</td>
<td>EPA 200.8</td>
<td>mg/L</td>
<td>0.0332**</td>
<td></td>
</tr>
<tr>
<td>Cyanide, Total</td>
<td>SM 4500–CN C, D, or E</td>
<td>mg/L</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>Lead, Total (H)</td>
<td>EPA 200.8</td>
<td>mg/L</td>
<td>0.262**</td>
<td></td>
</tr>
<tr>
<td>Chemical Oxygen Demand (COD)</td>
<td>SM 5220C</td>
<td>mg/L</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Aluminum, Total</td>
<td>EPA 200.8</td>
<td>mg/L</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Iron, Total</td>
<td>EPA 200.7</td>
<td>mg/L</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Nitrate + Nitrite Nitrogen</td>
<td>SM 4500-NO3- E</td>
<td>mg/L as N</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>SM 4500-P B+E</td>
<td>mg/L as P</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Ammonia (as N)</td>
<td>SM 4500-NH3 B+ C or E</td>
<td>mg/L</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>Magnesium, total</td>
<td>EPA 200.7</td>
<td>mg/L</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>Arsenic, Total (c)</td>
<td>EPA 200.8</td>
<td>mg/L</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Cadmium, Total (H)</td>
<td>EPA 200.8</td>
<td>mg/L</td>
<td>0.0053**</td>
<td></td>
</tr>
<tr>
<td>Nickel, Total (H)</td>
<td>EPA 200.8</td>
<td>mg/l</td>
<td>1.02**</td>
<td></td>
</tr>
<tr>
<td>Mercury, Total</td>
<td>EPA 245.1</td>
<td>mg/L</td>
<td>0.0014</td>
<td></td>
</tr>
<tr>
<td>Selenium, Total</td>
<td>EPA 200.8</td>
<td>mg/L</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Silver, Total (H)</td>
<td>EPA 200.8</td>
<td>mg/L</td>
<td>0.0183**</td>
<td></td>
</tr>
<tr>
<td>Biochemical Oxygen Demand (BOD)</td>
<td>SM 5210B</td>
<td>mg/L</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

SM – Standard Methods for the Examination of Water and Wastewater, 18th edition
EPA – U.S. EPA test methods
(H) – Hardness dependent
* Minimum parameters required by this General Permit
**The NAL is the highest value used by U.S. EPA based on their hardness table in the 2008 MSGP.
C. Methods and Exceptions

1. The Discharger shall comply with the monitoring methods in this General Permit and Attachment H.

2. pH Methods

 a. Dischargers that are not subject to Subchapter N ELGs mandating pH analysis related to acidic or alkaline sources and have never entered Level 1 status for pH, are eligible to screen for pH using wide range litmus pH paper or other equivalent pH test kits. The pH screen shall be performed as soon as practicable, but no later than 15 minutes after the sample is collected.

 b. Dischargers subject to Subchapter N ELGs shall either analyze samples for pH using methods in accordance with 40 Code of Federal Regulations 136 for testing storm water or use a calibrated portable instrument for pH.

 c. Dischargers that enter Level 1 status (see Section XII.C) for pH shall, in the subsequent reporting years, analyze for pH using methods in accordance with 40 Code of Federal Regulations 136 or use a calibrated portable instrument for pH.

 d. Dischargers using a calibrated portable instrument for pH shall ensure that all field measurements are conducted in accordance with the accompanying manufacturer’s instructions.

3. Alternative Discharge Locations

 a. The Discharger is required to identify, when practicable, alternative discharge locations for any discharge locations identified in accordance with Section XI.B.4 if the facility’s discharge locations are:

 i. Affected by storm water run-on from surrounding areas that cannot be controlled; and/or,

 ii. Difficult to observe or sample (e.g. submerged discharge outlets, dangerous discharge location accessibility).

 b. The Discharger shall submit and certify via SMARTS any alternative discharge location or revisions to the alternative discharge locations in the Monitoring Implementation Plan.

4. Representative Sampling Reduction

 a. The Discharger may reduce the number of locations to be sampled in each drainage area (e.g., roofs with multiple downspouts, loading/unloading areas with multiple storm drains) if the industrial
activities, BMPs, and physical characteristics (grade, surface materials, etc.) of the drainage area for each location to be sampled are substantially similar to one another. To qualify for the Representative Sampling Reduction, the Discharger shall provide a Representative Sampling Reduction justification in the Monitoring Implementation Plan section of the SWPPP.

b. The Representative Sampling Reduction justification shall include:

i. Identification and description of each drainage area and corresponding discharge location(s);

ii. A description of the industrial activities that occur throughout the drainage area;

iii. A description of the BMPs implemented in the drainage area;

iv. A description of the physical characteristics of the drainage area;

v. A rationale that demonstrates that the industrial activities and physical characteristics of the drainage area(s) are substantially similar; and,

vi. An identification of the discharge location(s) selected for representative sampling, and rationale demonstrating that the selected location(s) to be sampled are representative of the discharge from the entire drainage area.

c. A Discharger that satisfies the conditions of subsection 4.b.i through v above shall submit and certify via SMARTS the revisions to the Monitoring Implementation Plan that includes the Representative Sampling Reduction justification.

d. Upon submittal of the Representative Sampling Reduction justification, the Discharger may reduce the number of locations to be sampled in accordance with the Representative Sampling Reduction justification. The Regional Water Board may reject the Representative Sampling Reduction justification and/or request additional supporting documentation. In such instances, the Discharger is ineligible for the Representative Sampling Reduction until the Regional Water Board approves the Representative Sampling Reduction justification.

5. Qualified Combined Samples

a. The Discharger may authorize an analytical laboratory to combine samples of equal volume from as many as four (4) discharge locations if the industrial activities, BMPs, and physical characteristics (grade, surface materials, etc.) within each of the drainage areas are substantially similar to one another.
b. The Qualified Combined Samples justification shall include:

 i. Identification and description of each drainage area and corresponding discharge locations;

 ii. A description of the BMPs implemented in the drainage area;

 iii. A description of the industrial activities that occur throughout the drainage area;

 iv. A description of the physical characteristics of the drainage area;

 and,

 v. A rationale that demonstrates that the industrial activities and physical characteristics of the drainage area(s) are substantially similar.

c. A Discharger that satisfies the conditions of subsection 5.b.i through iv above shall submit and certify via SMARTS the revisions to the Monitoring Implementation Plan that includes the Qualified Combined Samples justification.

d. Upon submittal of the Qualified Combined Samples justification revisions in the Monitoring Implementation Plan, the Discharger may authorize the lab to combine samples of equal volume from as many as four (4) drainage areas. The Regional Water Board may reject the Qualified Combined Samples justification and/or request additional supporting documentation. In such instances, the Discharger is ineligible for the Qualified Combined Samples justification until the Regional Water Board approves the Qualified Combined Samples justification.

e. Regional Water Board approval is necessary to combine samples from more than four (4) discharge locations.

6. Sample Collection and Visual Observation Exceptions

 a. Sample collection and visual observations are not required under the following conditions:

 i. During dangerous weather conditions such as flooding or electrical storms; or,

 ii. Outside of scheduled facility operating hours. The Discharger is not precluded from collecting samples or conducting visual observations outside of scheduled facility operating hours.

 b. In the event that samples are not collected, or visual observations are not conducted in accordance with Section XI.B.5 due to these exceptions, an explanation shall be included in the Annual Report.
c. Sample collection is not required for drainage areas with no exposure to industrial activities and materials in accordance with the definitions in Section XVII.

7. Sampling Frequency Reduction Certification
 a. Dischargers are eligible to reduce the number of QSEs sampled each reporting year in accordance with the following requirements:

 i. Results from four (4) consecutive QSEs that were sampled (QSEs may be from different reporting years) did not exceed any NALs as defined in Section XII.A; and

 ii. The Discharger is in full compliance with the requirements of this General Permit and has updated, certified and submitted via SMARTS all documents, data, and reports required by this General Permit during the time period in which samples were collected.

 b. The Regional Water Board may notify a Discharger that it may not reduce the number of QSEs sampled each reporting year if the Discharger is subject to an enforcement action.

 c. An eligible Discharger shall certify via SMARTS that it meets the conditions in subsection 7.a above.

 d. Upon Sampling Frequency Reduction certification, the Discharger shall collect and analyze samples from one (1) QSE within the first half of each reporting year (July 1 to December 31), and one (1) QSE within the second half of each reporting year (January 1 to June 30). All other monitoring, sampling, and reporting requirements remain in effect.

 e. Dischargers who participate in a Compliance Group and certify a Sampling Frequency Reduction are only required to collect and analyze storm water samples from one (1) QSE within each reporting year.

 f. A Discharger may reduce sampling per the Sampling Frequency Reduction certification unless notified by the Regional Water Board that: (1) the Sampling Frequency Reduction certification has been rejected or (2) additional supporting documentation must be submitted. In such instances, a Discharger is ineligible for the Sampling Frequency Reduction until the Regional Water Board provides Sampling Frequency Reduction certification approval. Revised Sampling Frequency Reduction certifications shall be certified and submitted via SMARTS by the Discharger.

 g. A Discharger loses its Sampling Frequency Reduction certification if an NAL exceedance occurs (Section XII.A).
D. Facilities Subject to Federal Storm Water Effluent Limitation Guidelines (ELGs)

1. In addition to the other requirements in this General Permit, Dischargers with facilities subject to storm water ELGs in Subchapter N shall:

 a. Collect and analyze samples from QSEs for each regulated pollutant specified in the appropriate category in Subchapter N as specified in Section XI.B;

 b. For Dischargers with facilities subject to 40 Code of Federal Regulations parts 419\(^\text{17}\) and 443\(^\text{18}\), estimate or calculate the volume of industrial storm water discharges from each drainage area subject to the ELGs and the mass of each regulated pollutant as defined in parts 419 and 443; and,

 c. Ensure that the volume/mass estimates or calculations required in subsection b are completed by a California licensed professional engineer.

2. Dischargers subject to Subchapter N shall submit the information in Section XI.D.1.a through c in their Annual Report.

3. Dischargers with facilities subject to storm water ELGs in Subchapter N are ineligible for the Representative Sampling Reduction in Section XI.C.4.

XII. EXCEEDANCE RESPONSE ACTIONS (ERAs)

A. NALs and NAL Exceedances

The Discharger shall perform sampling, analysis and reporting in accordance with the requirements of this General Permit and shall compare the results to the two types of NAL values in Table 2 to determine whether either type of NAL has been exceeded for each applicable parameter. The two types of potential NAL exceedances are as follows:

1. Annual NAL exceedance: The Discharger shall determine the average concentration for each parameter using the results of all the sampling and analytical results for the entire facility for the reporting year (i.e., all "effluent" data). The Discharger shall compare the average concentration for each parameter to the corresponding annual NAL values in Table 2. For Dischargers using composite sampling or flow-weighted measurements in accordance with standard practices, the average concentrations shall be calculated in accordance with the U.S. EPA’s NPDES Storm Water...
An annual NAL exceedance occurs when the average of all the analytical results for a parameter from samples taken within a reporting year exceeds the annual NAL value for that parameter listed in Table 2; and,

2. Instantaneous maximum NAL exceedance: The Discharger shall compare all sampling and analytical results from each distinct sample (individual or combined as authorized by XI.C.5) to the corresponding instantaneous maximum NAL values in Table 2. An instantaneous maximum NAL exceedance occurs when two (2) or more analytical results from samples taken for any single parameter within a reporting year exceed the instantaneous maximum NAL value (for TSS and O&G) or are outside of the instantaneous maximum NAL range for pH.

B. Baseline Status

At the beginning of a Discharger's NOI Coverage, all Dischargers have Baseline status for all parameters.

C. Level 1 Status

A Discharger’s Baseline status for any given parameter shall change to Level 1 status if sampling results indicate an NAL exceedance for that same parameter. Level 1 status will commence on July 1 following the reporting year during which the exceedance(s) occurred.20

1. Level 1 ERA Evaluation

 a. By October 1 following commencement of Level 1 status for any parameter with sampling results indicating an NAL exceedance, the Discharger shall:

 b. Complete an evaluation, with the assistance of a QISP, of the industrial pollutant sources at the facility that are or may be related to the NAL exceedance(s); and,

 c. Identify in the evaluation the corresponding BMPs in the SWPPP and any additional BMPs and SWPPP revisions necessary to prevent future NAL exceedances and to comply with the requirements of this General Permit. Although the evaluation may focus on the drainage areas where the NAL exceedance(s) occurred, all drainage areas shall be evaluated.

2. Level 1 ERA Report

20 For all sampling results reported before June 30th of the preceding reporting year. If sample results indicating an NAL exceedance are submitted after June 30th, the Discharger will change status once those results have been reported.
a. Based upon the above evaluation, the Discharger shall, as soon as practicable but no later than January 1 following commencement of Level 1 status:

i. Revise the SWPPP as necessary and implement any additional BMPs identified in the evaluation;

ii. Certify and submit via SMARTS a Level 1 ERA Report prepared by a QISP that includes the following:

1) A summary of the Level 1 ERA Evaluation required in subsection C.1 above; and,

2) A detailed description of the SWPPP revisions and any additional BMPs for each parameter that exceeded an NAL.

iii. Certify and submit via SMARTS the QISP’s identification number, name, and contact information (telephone number, e-mail address).

b. A Discharger’s Level 1 status for a parameter will return to Baseline status once a Level 1 ERA report has been completed, all identified additional BMPs have been implemented, and results from four (4) consecutive QSEs that were sampled subsequent to BMP implementation indicate no additional NAL exceedances for that parameter.

3. NAL Exceedances Prior to Implementation of Level 1 Status BMPs.

Prior to the implementation of an additional BMP identified in the Level 1 ERA Evaluation or October 1, whichever comes first, sampling results for any parameter(s) being addressed by that additional BMP will not be included in the calculations of annual average or instantaneous NAL exceedances in SMARTS.

D. Level 2 Status

A Discharger’s Level 1 status for any given parameter shall change to Level 2 status if sampling results indicate an NAL exceedance for that same parameter while the Discharger is in Level 1. Level 2 status will commence on July 1 following the reporting year during which the NAL exceedance(s) occurred.21

1. Level 2 ERA Action Plan

21 For all sampling results reported before June 30th of the preceding reporting year. If sample results indicating an NAL exceedance are submitted after June 30th, the Discharger will change status upon the date those results have been reported into SMARTS.
a. Dischargers with Level 2 status shall certify and submit via SMARTS a Level 2 ERA Action Plan prepared by a QISP that addresses each new Level 2 NAL exceedance by January 1 following the reporting year during which the NAL exceedance(s) occurred. For each new Level 2 NAL exceedance, the Level 2 Action Plan will identify which of the demonstrations in subsection D.2.a through c the Discharger has selected to perform. A new Level 2 NAL exceedance is any Level 2 NAL exceedance for 1) a new parameter in any drainage area, or 2) the same parameter that is being addressed in an existing Level 2 ERA Action Plan in a different drainage area.

b. The Discharger shall certify and submit via SMARTS the QISP’s identification number, name, and contact information (telephone number, e-mail address) if this information has changed since previous certifications.

c. The Level 2 ERA Action Plan shall at a minimum address the drainage areas with corresponding Level 2 NAL exceedances.

d. All elements of the Level 2 ERA Action Plan shall be implemented as soon as practicable and completed no later than 1 year after submitting the Level 2 ERA Action Plan.

e. The Level 2 ERA Action Plan shall include a schedule and a detailed description of the tasks required to complete the Discharger’s selected demonstration(s) as described below in Section D.2.a through c.

2. Level 2 ERA Technical Report

On January 1 of the reporting year following the submittal of the Level 2 ERA Action Plan, a Discharger with Level 2 status shall certify and submit a Level 2 ERA Technical Report prepared by a QISP that includes one or more of the following demonstrations:

a. Industrial Activity BMPs Demonstration

This shall include the following requirements, as applicable:

i. Shall include a description of the industrial pollutant sources and corresponding industrial pollutants that are or may be related to the NAL exceedance(s);

ii. Shall include an evaluation of all pollutant sources associated with industrial activity that are or may be related to the NAL exceedance(s);

iii. Where all of the Discharger’s implemented BMPs, including additional BMPs identified in the Level 2 ERA Action Plan, achieve
compliance with the effluent limitations of this General Permit and are expected to eliminate future NAL exceedance(s), the Discharger shall provide a description and analysis of all implemented BMPs;

iv. In cases where all of the Discharger’s implemented BMPs, including additional BMPs identified in the Level 2 ERA Action Plan, achieve compliance with the effluent limitations of this General Permit but are not expected to eliminate future NAL exceedance(s), the Discharger shall provide, in addition to a description and analysis of all implemented BMPs:

1) An evaluation of any additional BMPs that would reduce or prevent NAL exceedances;

2) Estimated costs of the additional BMPs evaluated; and,

3) An analysis describing the basis for the selection of BMPs implemented in lieu of the additional BMPs evaluated but not implemented.

v. The description and analysis of BMPs required in subsection a.iii above shall specifically address the drainage areas where the NAL exceedance(s) responsible for the Discharger’s Level 2 status occurred, although any additional Level 2 ERA Action Plan BMPs may be implemented for all drainage areas; and,

vi. If an alternative design storm standard for treatment control BMPs (in lieu of the design storm standard for treatment control BMPs in Section X.H.6 in this General Permit) will achieve compliance with the effluent limitations of this General Permit, the Discharger shall provide an analysis describing the basis for the selection of the alternative design storm standard.

b. Non-Industrial Pollutant Source Demonstration

This shall include:

i. A statement that the Discharger has determined that the exceedance of the NAL is attributable solely to the presence of non-industrial pollutant sources. (The pollutant may also be present due to industrial activities, in which case the Discharger must demonstrate that the pollutant contribution from the industrial activities by itself does not result in an NAL exceedance.) The sources shall be identified as either run-on from adjacent properties, aerial deposition from man-made sources, or as generated by on-site non-industrial sources;
ii. A statement that the Discharger has identified and evaluated all potential pollutant sources that may have commingled with storm water associated with the Discharger’s industrial activity and may be contributing to the NAL exceedance;

iii. A description of any on-site industrial pollutant sources and corresponding industrial pollutants that are contributing to the NAL exceedance;

iv. An assessment of the relative contributions of the pollutant from (1) storm water run-on to the facility from adjacent properties or non-industrial portions of the Discharger’s property or from aerial deposition and (2) the storm water associated with the Discharger’s industrial activity;

v. A summary of all existing BMPs for that parameter; and,

vi. An evaluation of all on-site/off-site analytical monitoring data demonstrating that the NAL exceedances are caused by pollutants in storm water run-on to the facility from adjacent properties or non-industrial portions of the Discharger’s property or from aerial deposition.

c. Natural Background Pollutant Source Demonstration

This shall include:

i. A statement that the Discharger has determined that the NAL exceedance is attributable solely to the presence of the pollutant in the natural background that has not been disturbed by industrial activities. (The pollutant may also be present due to industrial activities, in which case the Discharger must demonstrate that the pollutant contribution from the industrial activities by itself does not result in an NAL exceedance);

ii. A summary of all data previously collected by the Discharger, or other identified data collectors, that describes the levels of natural background pollutants in the storm water discharge;

iii. A summary of any research and published literature that relates the pollutants evaluated at the facility as part of the Natural Background Source Demonstration;

iv. Map showing the reference site location in relation to facility along with available land cover information;

v. Reference site and test site elevation;
vi. Available geology and soil information for reference and test sites;

vii. Photographs showing site vegetation;

viii. Site reconnaissance survey data regarding presence of roads, outfalls, or other human-made structures; and,

ix. Records from relevant state or federal agencies indicating no known mining, forestry, or other human activities upstream of the proposed reference site.

3. Level 2 ERA Technical Report Submittal

a. The Discharger shall certify and submit via SMARTS the Level 2 ERA Technical Report described in Section D.2 above.

b. The State Water Board and Regional Boards (Water Boards) may review the submitted Level 2 ERA Technical Reports. Upon review of a Level 2 ERA Technical Report, the Water Boards may reject the Level 2 ERA Technical Report and direct the Discharger to take further action(s) to comply with this General Permit.

c. Dischargers with Level 2 status who have submitted the Level 2 ERA Technical Report are only required to annually update the Level 2 ERA Technical Report based upon additional NAL exceedances of the same parameter and same drainage area (if the original Level 2 ERA Technical Report contained an Industrial Activity BMP Demonstration and the implemented BMPs were expected to eliminate future NAL exceedances in accordance with Section XII.D.2.a.ii), facility operational changes, pollutant source(s) changes, and/or information that becomes available via compliance activities (monthly visual observations, sampling results, annual evaluation, etc.). The Level 2 ERA Technical Report shall be prepared by a QISP and be certified and submitted via SMARTS by the Discharger with each Annual Report. If there are no changes prompting an update of the Level 2 ERA Technical Report, as specified above, the Discharger will provide this certification in the Annual Report that there have been no changes warranting re-submittal of the Level 2 ERA Technical Report.

d. Dischargers are not precluded from submitting a Level 2 ERA Action Plan or ERA Technical Report prior to entering Level 2 status if information is available to adequately prepare the report and perform the demonstrations described above. A Discharger who chooses to submit a Level 2 ERA Action Plan or ERA Technical Report prior to entering Level 2 status will automatically be placed in Level 2 in accordance to the Level 2 ERA schedule.

4. Eligibility for Returning to Baseline Status
a. Dischargers with Level 2 status who submit an Industrial Activity BMPs Demonstration in accordance with subsection 2.a.i through iii above and have implemented BMPs to prevent future NAL exceedance(s) for the Level 2 parameter(s) shall return to baseline status for that parameter, if results from four (4) subsequent consecutive QSEs sampled indicate no additional NAL exceedance(s) for that parameter(s). If future NAL exceedances occur for the same parameter(s), the Discharger’s Baseline status will return to Level 2 status on July 1 in the subsequent reporting year during which the NAL exceedance(s) occurred. These Dischargers shall update the Level 2 ERA Technical Report as required above in Section D.3.c.

b. Dischargers are ineligible to return to baseline status if they submit any of the following:

i. A industrial activity BMP demonstration in accordance with subsection 2.a.iv above;

ii. An non-industrial pollutant source demonstration; or,

iii. A natural background pollutant source demonstration.

5. Level 2 ERA Implementation Extension

a. Dischargers that need additional time to submit the Level 2 ERA Technical Report shall be automatically granted a single time extension for up to six (6) months upon submitting the following items into SMARTS, as applicable:

i. Reasons for the time extension;

ii. A revised Level 2 ERA Action Plan including a schedule and a detailed description of the necessary tasks still to be performed to complete the Level 2 ERA Technical Report; and

iii. A description of any additional temporary BMPs that will be implemented while permanent BMPs are being constructed.

b. The Regional Water Boards will review Level 2 ERA Implementation Extensions for completeness and adequacy. Requests for extensions that total more than six (6) months are not granted unless approved in writing by the Water Boards. The Water Boards may (1) reject or revise the time allowed to complete Level 2 ERA Implementation Extensions, (2) identify additional tasks necessary to complete the Level 2 ERA Technical Report, and/or (3) require the Discharger to implement additional temporary BMPs.
XIII. INACTIVE MINING OPERATION CERTIFICATION

A. Inactive mining operations are defined in Part 3 of Attachment A of this General Permit. The Discharger may, in lieu of complying with the General Permit requirements described in subsection B below, certify and submit via SMARTS that their inactive mining operation meets the following conditions:

1. The Discharger has determined and justified in the SWPPP that it is impracticable to implement the monitoring requirements in this General Permit for the inactive mining operation;

2. A SWPPP has been signed (wet signature and license number) by a California licensed professional engineer and is being implemented in accordance with the requirements of this General Permit; and,

3. The facility is in compliance with this General Permit, except as provided in subsection B below.

B. The Discharger who has certified and submitted that they meet the conditions in subsection A above, are not subject to the following General Permit requirements:

1. Monitoring Implementation Plan in Section X.I;

2. Monitoring Requirements in Section XI;

3. Exceedance Response Actions (ERAs) in Section XII; and,

4. Annual Report Requirements in Section XVI.

C. Inactive Mining Operation Certification Submittal Schedule

1. The Discharger shall certify and submit via SMARTS NOI coverage PRDs listed in Section II.B.1 and meet the conditions in subsection A above.

2. The Discharger shall annually inspect the inactive mining site and certify via SMARTS no later than July 15th of each reporting year, that their inactive mining operation continues to meet the conditions in subsection A above.

3. The Discharger shall have a California licensed professional engineer review and update the SWPPP if there are changes to their inactive mining operation or additional BMPs are needed to comply with this General Permit. Any significant updates to the SWPPP shall be signed (wet signature and license number) by a California license professional engineer.

4. The Discharger shall certify and submit via SMARTS any significantly revised SWPPP within 30 days of the revision(s).
XIV. COMPLIANCE GROUPS AND COMPLIANCE GROUP LEADERS

A. Compliance Group Qualification Requirements

1. Any group of Dischargers of the same industry type or any QISP representing Dischargers of the same industry type may form a Compliance Group. A Compliance Group shall consist of Dischargers that operate facilities with similar types of industrial activities, pollutant sources, and pollutant characteristics (e.g., scrap metals recyclers would join a different group than paper recyclers, truck vehicle maintenance facilities would join a different group than airplane vehicle maintenance facilities, etc.). A Discharger participating in a Compliance Group is termed a Compliance Group Participant. Participation in a Compliance Group is not required. Compliance Groups may be formed at any time.

2. Each Compliance Group shall have a Compliance Group Leader.

3. To establish a Compliance Group, the Compliance Group Leader shall register as a Compliance Group Leader via SMARTS. The registration shall include documentation demonstrating compliance with the Compliance Group qualification requirements above and a list of the Compliance Group Participants.

4. Each Compliance Group Participant shall register as a member of an established Compliance Group via SMARTS.

5. The Executive Director of the State Water Board may review Compliance Group registrations and/or activities for compliance with the requirements of this General Permit. The Executive Director may reject the Compliance Group, the Compliance Group Leader, or individual Compliance Group Participants within the Compliance Group.

B. Compliance Group Leader Responsibilities

1. A Compliance Group Leader must complete a State Water Board sponsored or approved training program for Compliance Group Leaders.

2. The Compliance Group Leader shall assist Compliance Group Participants with all compliance activities required by this General Permit.

3. A Compliance Group Leader shall prepare a Consolidated Level 1 ERA Report for all Compliance Group Participants with Level 1 status for the same parameter. Compliance Group Participants who certify and submit these Consolidated Level 1 ERA Reports are subject to the same provisions as individual Dischargers with Level 1 status, as described in Section XII.C. A Consolidated Level 1 ERA Report is equivalent to a Level 1 ERA Report.
4. The Compliance Group Leader shall update the Consolidated Level 1 ERA Report as needed to address additional Compliance Group Participants with ERA Level 1 status.

5. A Compliance Group Leader shall prepare a Level 2 ERA Action Plan specific to each Compliance Group Participant with Level 2 status. Compliance Group Participants who certify and submit these Level 2 ERA Action Plans are subject to the same provisions as individual Dischargers with Level 2 status, as described in Section XII.D.

6. A Compliance Group Leader shall prepare a Level 2 ERA Technical Report specific to each Compliance Group Participant with Level 2 status. Compliance Group Participants who certify and submit these Level 2 ERA Technical Reports are subject to the same provisions as individual Dischargers with Level 2 status, as described in Section XII.D.

7. The Compliance Group Leader shall inspect all the facilities of the Compliance Group Participants that have entered Level 2 status prior to preparing the individual Level 2 ERA Technical Report.

8. The Compliance Group Leader shall revise the Consolidated Level 1 ERA Report, individual Level 2 ERA Action Plans, or individual Level 2 Technical Reports in accordance with any comments received from the Water Boards.

9. The Compliance Group Leader shall inspect all the facilities of the Compliance Group Participants at a minimum of once per reporting year (July 1 to June 30).

C. Compliance Group Participant Responsibilities

1. Each Compliance Group Participant is responsible for permit compliance for the Compliance Group Participant’s facility and for ensuring that the Compliance Group Leader’s activities related to the Compliance Group Participant’s facility comply with this General Permit.

2. Compliance Group Participants with Level 1 status shall certify and submit via SMARTS the Consolidated Level 1 ERA Report. The Compliance Group Participants shall certify that they have reviewed the Consolidated Level 1 ERA Report and have implemented any required additional BMPs. Alternatively, the Compliance Group Participant may submit an individual Level 1 ERA Report in accordance with the provisions in Section XII.C.2.

3. Compliance Group Participants with Level 2 status shall certify and submit via SMARTS their individual Level 2 ERA Action Plan and Technical Report prepared by their Compliance Group Leader. Each Compliance Group Participant shall certify that they have reviewed the Level 2 ERA Action Plan and Technical Report and will implement any required additional BMPs.
4. Compliance Group Participants can at any time discontinue their participation in their associated Compliance Group via SMARTS. Upon discontinuation, the former Compliance Group Participant is immediately subject to the sampling and analysis requirements described in Section XI.B.2.

XV. ANNUAL COMPREHENSIVE FACILITY COMPLIANCE EVALUATION (ANNUAL EVALUATION)

The Discharger shall conduct one Annual Evaluation for each reporting year (July 1 to June 30). If the Discharger conducts an Annual Evaluation fewer than eight (8) months, or more than sixteen (16) months, after it conducts the previous Annual Evaluation, it shall document the justification for doing so. The Discharger shall revise the SWPPP, as appropriate, and implement the revisions within 90 days of the Annual Evaluation. At a minimum, Annual Evaluations shall consist of:

A. A review of all sampling, visual observation, and inspection records conducted during the previous reporting year;

B. An inspection of all areas of industrial activity and associated potential pollutant sources for evidence of, or the potential for, pollutants entering the storm water conveyance system;

C. An inspection of all drainage areas previously identified as having no exposure to industrial activities and materials in accordance with the definitions in Section XVII;

D. An inspection of equipment needed to implement the BMPs;

E. An inspection of any BMPs;

F. A review and effectiveness assessment of all BMPs for each area of industrial activity and associated potential pollutant sources to determine if the BMPs are properly designed, implemented, and are effective in reducing and preventing pollutants in industrial storm water discharges and authorized NSWDs; and,

G. An assessment of any other factors needed to comply with the requirements in Section XVI.B.

XVI. ANNUAL REPORT

A. The Discharger shall certify and submit via SMARTS an Annual Report no later than July 15th following each reporting year using the standardized format and checklists in SMARTS.

B. The Discharger shall include in the Annual Report:

1. A Compliance Checklist that indicates whether a Discharger complies with, and has addressed all applicable requirements of this General Permit;
2. An explanation for any non-compliance of requirements within the reporting year, as indicated in the Compliance Checklist;

3. An identification, including page numbers and/or sections, of all revisions made to the SWPPP within the reporting year; and,

4. The date(s) of the Annual Evaluation.

XVII. CONDITIONAL EXCLUSION - NO EXPOSURE CERTIFICATION (NEC)

A. Discharges composed entirely of storm water that has not been exposed to industrial activity are not industrial storm water discharges. Dischargers are conditionally excluded from complying with the SWPPP and monitoring requirements of this General Permit if all of the following conditions are met:

1. There is no exposure of Industrial Materials and Activities to rain, snow, snowmelt, and/or runoff;

2. All unauthorized NSWDs have been eliminated and all authorized NSWDs meet the conditions of Section IV;

3. The Discharger has certified and submitted via SMARTS PRDs for NEC coverage pursuant to the instructions in Section II.B.2; and,

4. The Discharger has satisfied all other requirements of this Section.

B. NEC Specific Definitions

1. No Exposure - all Industrial Materials and Activities are protected by a Storm-Resistant Shelter to prevent all exposure to rain, snow, snowmelt, and/or runoff.

2. Industrial Materials and Activities - includes, but is not limited to, industrial material handling activities or equipment, machinery, raw materials, intermediate products, by-products, final products, and waste products.

3. Material Handling Activities - includes the storage, loading and unloading, transportation, or conveyance of any industrial raw material, intermediate product, final product, or waste product.

4. Sealed - banded or otherwise secured, and without operational taps or valves.

5. Storm-Resistant Shelters - includes completely roofed and walled buildings or structures. Also includes structures with only a top cover supported by permanent supports but with no side coverings, provided material within the structure is not subject to wind dispersion (sawdust, powders, etc.), or track-out, and there is no storm water discharged from within the structure that comes into contact with any materials.
C. NEC Qualifications

To qualify for an NEC, a Discharger shall:

1. Except as provided in subsection D below, provide a Storm-Resistant Shelter to protect Industrial Materials and Activities from exposure to rain, snow, snowmelt, run-on, and runoff;

2. Inspect and evaluate the facility annually to determine that storm water exposed to industrial materials or equipment has not and will not be discharged to waters of the United States. Evaluation records shall be maintained for five (5) years in accordance with Section XXI.J.4;

3. Register for NEC coverage by certifying that there are no discharges of storm water contaminated by exposure to Industrial Materials and Activities from areas of the facility subject to this General Permit, and certify that all unauthorized NSWDs have been eliminated and all authorized NSWDs meet the conditions of Section IV (Authorized NSWDs). NEC coverage and annual renewal requires payment of an annual fee in accordance with California Code of Regulations, title 23, section 2200 et seq.; and,

4. Submit PRDs for NEC coverage shall be prepared and submitted in accordance with the:
 a. Certification requirements in Section XXI.K; and,
 b. Submittal schedule in accordance with Section II.B.2.

D. NEC Industrial Materials and Activities - Storm-Resistant Shelter Not Required

To qualify for NEC coverage, a Storm-Resistant Shelter is not required for the following:

1. Drums, barrels, tanks, and similar containers that are tightly Sealed, provided those containers are not deteriorated, do not contain residual industrial materials on the outside surfaces, and do not leak;

2. Adequately maintained vehicles used in material handling;

3. Final products, other than products that would be mobilized in storm water discharge (e.g., rock salt);

4. Any Industrial Materials and Activities that are protected by a temporary shelter for a period of no more than ninety (90) days due to facility construction or remodeling; and,

5. Any Industrial Materials and Activities that are protected within a secondary containment structure that will not discharge storm water to waters of the United States.
E. NEC Limitations

1. NEC coverage is available on a facility-wide basis only, not for individual outfalls. If a facility has industrial storm water discharges from one or more drainage areas that require NOI coverage, Dischargers shall register for NOI coverage for the entire facility through SMARTS in accordance with Section II.B.2. Any drainage areas on that facility that would otherwise qualify for NEC coverage may be specially addressed in the facility SWPPP by including an NEC Checklist and a certification statement demonstrating that those drainage areas of the facility have been evaluated; and that none of the Industrial Materials or Activities listed in subsection C above are, or will be in the foreseeable future, exposed to precipitation.

2. If circumstances change and Industrial Materials and Activities become exposed to rain, snow, snowmelt, and/or runoff, the conditions for this exclusion shall no longer apply. In such cases, the Discharger may be subject to enforcement for discharging without a permit. A Discharger with NEC coverage that anticipates changes in circumstances should register for NOI coverage at least seven (7) days before anticipated exposure.

3. The Regional Water Board may deny NEC coverage and require NOI coverage upon determining that:
 a. Storm water is exposed to Industrial Materials and Activities; and/or
 b. The discharge has a reasonable potential to cause or contribute to an exceedance of an applicable water quality standards.

F. NEC Permit Registration Documents Required for Initial NEC Coverage

A Discharger shall submit via SMARTS the following PRDs for NEC coverage to document the applicability of the conditional exclusion:

1. The NEC form, which includes:
 a. The legal name, postal address, telephone number, and e-mail address of the Discharger;
 b. The facility business name and physical mailing address, the county name, and a description of the facility location if the facility does not have a physical mailing address; and,
 c. Certification by the Discharger that all PRDs submitted are correct and true and the conditions of no exposure have been met.

2. An NEC Checklist prepared by the Discharger demonstrating that the facility has been evaluated; and that none of the following industrial materials or activities are, or will be in the foreseeable future, exposed to precipitation:
a. Using, storing or cleaning industrial machinery or equipment, and areas where residuals from using, storing or cleaning industrial machinery or equipment remain and are exposed;

b. Materials or residuals on the ground or in storm water inlets from spills/leaks;

c. Materials or products from past industrial activity;

d. Material handling equipment (except adequately maintained vehicles);

e. Materials or products during loading/unloading or transporting activities;

f. Materials or products stored outdoors (except final products intended for outside use, e.g., new cars, where exposure to storm water does not result in the discharge of pollutants);

g. Materials contained in open, deteriorated or leaking storage drums, barrels, tanks, and similar containers;

h. Materials or products handled/stored on roads or railways owned or maintained by the Discharger;

i. Waste material (except waste in covered, non-leaking containers, e.g., dumpsters);

j. Application or disposal of processed wastewater (unless already covered by an NPDES permit); and,

k. Particulate matter or visible deposits of residuals from roof stacks/vents evident in the storm water outflow.

3. Site Map (see Section X.E).

G. Requirements for Annual NEC Coverage Recertification

By October 1 of each reporting year beginning in 2015, any Discharger who has previously registered for NEC coverage shall either submit and certify an NEC demonstrating that the facility has been evaluated, and that none of the Industrial Materials or Activities listed above are, or will be in the foreseeable future, exposed to precipitation, or apply for NOI coverage.

H. NEC Certification Statement

All NEC certifications and re-certifications shall include the following certification statement:

I certify under penalty of law that I have read and understand the eligibility requirements for claiming a condition of ‘no exposure’ and obtaining an exclusion from NPDES storm water permitting; and that there are no discharges of storm water contaminated by exposure to industrial activities
or materials from the industrial facility identified in this document (except as allowed in subsection C above). I understand that I am obligated to submit a no exposure certification form annually to the State Water Board and, if requested, to the operator of the local Municipal Separate Storm Sewer System (MS4) into which this facility discharges (where applicable). I understand that I must allow the Water Board staff, or MS4 operator where the discharge is into the local MS4, to perform inspections to confirm the condition of no exposure and to make such inspection reports publicly available upon request. I understand that I must obtain coverage under an NPDES permit prior to any point source discharge of storm water from the facility. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based upon my inquiry of the person or persons who manage the system, or those persons directly involved in gathering the information, the information submitted is to the best of my knowledge and belief true, accurate and complete. I am aware there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

XVIII. SPECIAL REQUIREMENTS - PLASTIC MATERIALS

A. Facilities covered under this General Permit that handle Plastic Materials are required to implement BMPs to eliminate discharges of plastic in storm water in addition to the other requirements of this General Permit that are applicable to all other Industrial Materials and Activities. Plastic Materials are virgin and recycled plastic resin pellets, powders, flakes, powdered additives, regrind, dust, and other similar types of preproduction plastics with the potential to discharge or migrate off-site. Any Dischargers’ facility handling Plastic Materials will be referred to as Plastics Facilities in this General Permit. Any Plastics Facility covered under this General Permit that manufactures, transports, stores, or consumes these materials shall submit information to the State Water Board in their PRDs, including the type and form of plastics, and which BMPs are implemented at the facility to prevent illicit discharges. Pursuant to Water Code section 13367, Plastics Facilities are subject to mandatory, minimum BMPs.

1. At a minimum, Plastics Facilities shall implement and include in the SWPPP:

 a. Containment systems at each on-site storm drain discharge location down gradient of areas containing plastic material. The containment system shall be designed to trap all particles retained by a 1mm mesh screen, with a treatment capacity of no less than the peak flow rate from a one-year, one-hour storm.

 b. When a containment system is infeasible, or poses the potential to cause an illicit discharge, the facility may propose a technically feasible
alternative BMP or suite of BMPs. The alternative BMPs shall be designed to achieve the same or better performance standard as a 1mm mesh screen with a treatment capacity of the peak flow rate from a one-year, one-hour storm. Alternative BMPs shall be submitted to the Regional Water Board for approval.

c. Plastics Facilities shall use durable sealed containers designed not to rupture under typical loading and unloading activities at all points of plastic transfer and storage.

d. Plastics Facilities shall use capture devices as a form of secondary containment during transfers, loading, or unloading Plastic Materials. Examples of capture devices for secondary containment include, but are not limited to catch pans, tarps, berms or any other device that collects errant material.

e. Plastics Facilities shall have a vacuum or vacuum-type system for quick cleanup of fugitive plastic material available for employees.

f. Pursuant to Water Code section 13367(e)(1), Plastics Facilities that handle Plastic Materials smaller than 1mm in size shall develop a containment system designed to trap the smallest plastic material handled at the facility with a treatment capacity of at least the peak flow rate from a one-year, one-hour storm, or develop a feasible alternative BMP or suite of BMPs that are designed to achieve a similar or better performance standard that shall be submitted to the Regional Water Board for approval.

2. Plastics Facilities are exempt from the Water Code requirement to install a containment system under section 13367 of the Water Code if they meet one of the following requirements that are determined to be equal to, or exceed the performance requirements of a containment system:

a. The Discharger has certified and submitted via SMARTS a valid No Exposure Certification (NEC) in accordance with Section XVII; or

b. Plastics Facilities are exempt from installing a containment system, if the following suite of eight (8) BMPs is implemented. This combination of BMPs is considered to reduce or prevent the discharge of plastics at a performance level equivalent to or better than the 1mm mesh and flow standard in Water Code section 13367(e)(1).

i. Plastics Facilities shall annually train employees handling Plastic Materials. Training shall include environmental hazards of plastic discharges, employee responsibility for corrective actions to prevent errant Plastic Materials, and standard procedures for containing, cleaning, and disposing of errant Plastic Materials.
ii. Plastics Facilities shall immediately fix any Plastic Materials containers that are punctured or leaking and shall clean up any errant material in a timely manner.

iii. Plastics Facilities shall manage outdoor waste disposal of Plastic Materials in a manner that prevents the materials from leaking from waste disposal containers or during waste hauling.

iv. Plastics Facilities that operate outdoor conveyance systems for Plastic Materials shall maintain the system in good operating condition. The system shall be sealed or filtered in such a way as to prevent the escape of materials when in operation. When not in operation, all connection points shall be sealed, capped, or filtered so as to not allow material to escape. Employees operating the conveyance system shall be trained how to operate in a manner that prevents the loss of materials such as secondary containment, immediate spill response, and checks to ensure the system is empty during connection changes.

v. Plastics Facilities that maintain outdoor storage of Plastic Materials shall do so in a durable, permanent structure that prevents exposure to weather that could cause the material to migrate or discharge in storm water.

vi. Plastics Facilities shall maintain a schedule for regular housekeeping and routine inspection for errant Plastic Materials. The Plastics Facility shall ensure that their employees follow the schedule.

vii. PRDs shall include the housekeeping and routine inspection schedule, spill response and prevention procedures, and employee training materials regarding plastic material handling.

viii. Plastics Facilities shall correct any deficiencies in the employment of the above BMPs that result in errant Plastic Materials that may discharge or migrate off-site in a timely manner. Any Plastic Materials that are discharged or that migrate off-site constitute an illicit discharge in violation of this General Permit.

XIX. REGIONAL WATER BOARD AUTHORITIES

A. The Regional Water Boards may review a Discharger’s PRDs for NOI or NEC coverage and administratively reject General Permit coverage if the PRDs are deemed incomplete. The Regional Water Boards may take actions that include rescinding General Permit coverage, requiring a Discharger to revise and re-submit their PRDs (certified and submitted by the Discharger) within a specified time period, requiring the Discharger to apply for different General Permit coverage or a different individual or general permit, or taking no action.

B. The Regional Water Boards have the authority to enforce the provisions and requirements of this General Permit. This includes, but is not limited to,
reviewing SWPPPs, Monitoring Implementation Plans, ERA Reports, and Annual Reports, conducting compliance inspections, and taking enforcement actions.

C. As appropriate, the Regional Water Boards may issue NPDES storm water general or individual permits to a Discharger, categories of Dischargers, or Dischargers within a watershed or geographic area. Upon issuance of such NPDES permits, this General Permit shall no longer regulate the affected Discharger(s).

D. The Regional Water Boards may require a Discharger to revise its SWPPP, ERA Reports, or monitoring programs to achieve compliance with this General Permit. In this case, the Discharger shall implement these revisions in accordance with a schedule provided by the Regional Water Board.

E. The Regional Water Boards may approve requests from a Discharger to include co-located, but discontinuous industrial activities within the same facility under a single NOI or NEC coverage.

F. Consistent with 40 Code of Federal Regulations section 122.26(a)(9)(i)(D), the Regional Water Boards may require any discharge that is not regulated by this General Permit, that is determined to contribute to a violation of a water quality standard or is a significant contributor of pollutants to waters of the United States, to be covered under this General Permit as appropriate. Upon designation, the Discharger responsible for the discharge shall obtain coverage under this General Permit.

G. The Regional Water Boards may review a Discharger’s Inactive Mining Operation Certification and reject it at any time if the Regional Water Board determines that access to the facility for monitoring purposes is practicable or that the facility is not in compliance with the applicable requirements of this General Permit.

H. All Regional Water Board actions that modify a Discharger’s obligations under this General Permit must be in writing and should also be submitted in SMARTS.

XX. SPECIAL CONDITIONS

A. Reopener Clause

This General Permit may be reopened and amended to incorporate TMDL-related provisions. This General Permit may also be modified, revoked and reissued, or terminated for cause due to promulgation of amended regulations, water quality control plans or water quality control policies, receipt of U.S. EPA guidance concerning regulated activities, judicial decision, or in accordance with 40 Code of Federal Regulations sections 122.62, 122.63, 122.64, and 124.5.

B. Water Quality Based Corrective Actions
1. Upon determination by the Discharger or written notification by the Regional Water Board that industrial storm water discharges and/or authorized NSWDs contain pollutants that are in violation of Receiving Water Limitations (Section VI), the Discharger shall:

 a. Conduct a facility evaluation to identify pollutant source(s) within the facility that are associated with industrial activity and whether the BMPs described in the SWPPP have been properly implemented;

 b. Assess the facility’s SWPPP and its implementation to determine whether additional BMPs or SWPPP implementation measures are necessary to reduce or prevent pollutants in industrial storm water discharges to meet the Receiving Water Limitations (Section VI); and,

 c. Certify and submit via SMARTS documentation based upon the above facility evaluation and assessment that:

 i. Additional BMPs and/or SWPPP implementation measures have been identified and included in the SWPPP to meet the Receiving Water Limitations (Section VI); or

 ii. No additional BMPs or SWPPP implementation measures are required to reduce or prevent pollutants in industrial storm water discharges to meet the Receiving Water Limitations (Section VI).

2. The Regional Water Board may reject the Discharger’s water quality based corrective actions and/or request additional supporting documentation.

C. Requirements for Dischargers Claiming “No Discharge” through the Notice of Non-Applicability (NONA)

1. For the purpose of the NONA, the Entity (Entities) is referring to the person(s) defined in section 13399.30 of the Water Code.

2. Entities who are claiming “No Discharge” through the NONA shall meet the following eligibility requirements:

 a. The facility is engineered and constructed to have contained the maximum historic precipitation event (or series of events) using the precipitation data collected from the National Oceanic and Atmospheric Agency’s website (or other nearby precipitation data available from other government agencies) so that there will be no discharge of industrial storm water to waters of the United States; or,

 b. The facility is located in basins or other physical locations that are not hydrologically connected to waters of the United States.

3. When claiming the “No Discharge” option, Entities shall submit and certify via SMARTS both the NONA and a No Discharge Technical Report. The No
Discharge Technical Report shall demonstrate the facility meets the eligibility requirements described above.

4. The No Discharge Technical Report shall be signed (wet signature and license number) by a California licensed professional engineer.

XXI. STANDARD CONDITIONS

A. Duty to Comply

Dischargers shall comply with all standard conditions in this General Permit. Permit noncompliance constitutes a violation of the Clean Water Act and the Water Code and is grounds for enforcement action and/or removal from General Permit coverage.

Dischargers shall comply with effluent standards or prohibitions established under section 307(a) of the Clean Water Act for toxic pollutants within the time provided in the regulations that establish these standards or prohibitions.

B. Duty to Reapply

Dischargers that wish to continue an activity regulated under this General Permit after the expiration date of this General Permit shall apply for and obtain authorization from the Water Boards as required by the new general permit once it is issued.

C. General Permit Actions

1. This General Permit may be modified, revoked and reissued, or terminated for cause. Submittal of a request by the Discharger for General Permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not annul any General Permit condition.

2. If a toxic effluent standard or prohibition (including any schedule of compliance specified in such effluent standard or prohibition) is promulgated under section 307(a) of the Clean Water Act for a toxic pollutant which is present in the discharge, and that standard or prohibition is more stringent than any limitation on the pollutant in this General Permit, this General Permit shall be modified or revoked and reissued to conform to the toxic effluent standard or prohibition.

D. Need to Halt or Reduce Activity Not a Defense

In an enforcement action, it shall not be a defense for a Discharger that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this General Permit.
E. Duty to Mitigate

Dischargers shall take all responsible steps to reduce or prevent any discharge that has a reasonable likelihood of adversely affecting human health or the environment.

F. Proper Operation and Maintenance

Dischargers shall at all times properly operate and maintain any facilities and systems of treatment and control (and related equipment and apparatuses) which are installed or used by the Discharger to achieve compliance with the conditions of this General Permit. Proper operation and maintenance also include adequate laboratory controls and appropriate quality assurance procedures. Proper operation and maintenance may require the operation of backup or auxiliary facilities or similar systems installed by a Discharger when necessary to achieve compliance with the conditions of this General Permit.

G. Property Rights

This General Permit does not convey any property rights of any sort or any exclusive privileges. It also does not authorize any injury to private property or any invasion of personal rights, nor does it authorize any infringement of federal, state, or local laws and regulations.

H. Duty to Provide Information

Upon request by the relevant agency, Dischargers shall provide information to determine compliance with this General Permit to the Water Boards, U.S. EPA, or local Municipal Separate Storm Sewer System (MS4) within a reasonable time. Dischargers shall also furnish, upon request by the relevant agency, copies of records that are required to be kept by this General Permit.

I. Inspection and Entry

Dischargers shall allow the Water Boards, U.S. EPA, and local MS4 (including any authorized contractor acting as their representative), to:

1. Enter upon the premises at reasonable times where a regulated industrial activity is being conducted or where records are kept under the conditions of this General Permit;

2. Access and copy at reasonable times any records that must be kept under the conditions of this General Permit;

3. Inspect the facility at reasonable times; and,

4. Sample or monitor at reasonable times for the purpose of ensuring General Permit compliance.
J. Monitoring and Records

1. Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity.

2. If Dischargers monitor any pollutant more frequently than required, the results of such monitoring shall be included in the calculation and reporting of the data submitted.

3. Records of monitoring information shall include:
 a. The date, exact location, and time of sampling or measurement;
 b. The date(s) analyses were performed;
 c. The individual(s) that performed the analyses;
 d. The analytical techniques or methods used; and,
 e. The results of such analyses.

4. Dischargers shall retain, for a period of at least five (5) years, either a paper or electronic copy of all storm water monitoring information, records, data, and reports required by this General Permit. Copies shall be available for review by the Water Board’s staff at the facility during scheduled facility operating hours.

5. Upon written request by U.S. EPA or the local MS4, Dischargers shall provide paper or electronic copies of Annual Reports or other requested records to the Water Boards, U.S. EPA, or local MS4 within ten (10) days from receipt of the request.

K. Electronic Signature and Certification Requirements

1. All Permit Registration Documents (PRDs) for NOI and NEC coverage shall be certified and submitted via SMARTS by the Discharger’s Legally Responsible Person (LRP). All other documents may be certified and submitted via SMARTS by the LRP or by their designated Duly Authorized Representative.

2. When a new LRP or Duly Authorized Representative is designated, the Discharger shall ensure that the appropriate revisions are made via SMARTS. In unexpected or emergency situations, it may be necessary for the Discharger to directly contact the State Water Board’s Storm Water Section to register for SMARTS account access in order to designate a new LRP.

3. Documents certified and submitted via SMARTS by an unauthorized or ineligible LRP or Duly Authorized Representative are invalid.
4. LRP eligibility is as follows:

a. For a corporation: by a responsible corporate officer. For the purpose of this section, a responsible corporate officer means:

i. A president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function; or

ii. The manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.

b. For a partnership or sole proprietorship: by a general partner or the proprietor, respectively;

c. For a municipality, state, federal, or other public agency: by either a principal executive officer or ranking elected official. This includes the chief executive officer of the agency or the senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., Regional Administrators of U.S. EPA).

5. Duly Authorized Representative eligibility is as follows:

a. The Discharger must authorize via SMARTS any person designated as a Duly Authorized Representative;

b. The authorization shall specify that a person designated as a Duly Authorized Representative has responsibility for the overall operation of the regulated facility or activity, such as a person that is a manager, operator, superintendent, or another position of equivalent responsibility, or is an individual who has overall responsibility for environmental matters for the company; and,

c. The authorization must be current (it has been updated to reflect a different individual or position) prior to any report submittals, certifications, or records certified by the Duly Authorized Representative.
L. Certification

Any person signing, certifying, and submitting documents under Section XXI.K above shall make the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons that manage the system or those persons directly responsible for gathering the information, to the best of my knowledge and belief, the information submitted is, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

M. Anticipated Noncompliance

Dischargers shall give advance notice to the Regional Water Board and local MS4 of any planned changes in the industrial activity that may result in noncompliance with this General Permit.

N. Penalties for Falsification of Reports

Clean Water Act section 309(c)(4) provides that any person that knowingly makes any false material statement, representation, or certification in any record or other document submitted or required to be maintained under this General Permit, including reports of compliance or noncompliance shall upon conviction, be punished by a fine of not more than $10,000 or by imprisonment for not more than two years or by both.

O. Oil and Hazardous Substance Liability

Nothing in this General Permit shall be construed to preclude the initiation of any legal action or relieve the Discharger from any responsibilities, liabilities, or penalties to which the Discharger is or may be subject to under section 311 of the Clean Water Act.

P. Severability

The provisions of this General Permit are severable; if any provision of this General Permit or the application of any provision of this General Permit to any circumstance is held invalid, the application of such provision to other circumstances and the remainder of this General Permit shall not be affected thereby.

Q. Penalties for Violations of Permit Conditions

1. Clean Water Act section 309 provides significant penalties for any person that violates a permit condition implementing sections 301, 302, 306, 307, 308, 318, or 405 of the Clean Water Act or any permit condition or limitation implementing any such section in a permit issued under section 402. Any
person that violates any permit condition of this General Permit is subject to a civil penalty not to exceed $37,50022 per calendar day of such violation, as well as any other appropriate sanction provided by section 309 of the Clean Water Act.

2. The Porter-Cologne Water Quality Control Act also provides for civil and criminal penalties, which may be greater than penalties under the Clean Water Act.

R. Transfers

Coverage under this General Permit is non-transferrable. When operation of the facility has been transferred to another entity, or a facility is relocated, new PRDs for NOI and NEC coverage must be certified and submitted via SMARTS prior to the transfer, or at least seven (7) days prior to the first day of operations for a relocated facility.

S. Continuation of Expired General Permit

If this General Permit is not reissued or replaced prior to the expiration date, it will be administratively continued in accordance with 40 Code of Federal Regulations 122.6 and remain in full force and effect.

22 May be further adjusted in accordance with the Federal Civil Penalties Inflation Adjustment Act.
*The factsheet to the IGP was updated in January 2015 to correct typographical errors. The deadline listed in Section I.D.13 (page 8) and Section II.G.1 (page 27) of the factsheet for dischargers with outfalls to ocean waters to develop and implement a monitoring program in compliance with the California Ocean Plan model monitoring provisions was corrected to July 1, 2015, which is the deadline listed in finding 44 in the general order.
TABLE OF CONTENTS

I. BACKGROUND ... 1
 A. Purpose .. 1
 B. History .. 1
 C. Blue Ribbon Panel of Experts (Panel) ... 2
 D. Summary of Significant Changes in this General Permit ... 4

II. TECHNICAL RATIONALE FOR REQUIREMENTS IN THIS GENERAL PERMIT 9
 A. Receiving General Permit Coverage .. 9
 B. Discharge Prohibitions .. 14
 C. Non-Storm Water Discharges (NSWDs) ... 14
 D. Effluent Limitations .. 15
 E. Receiving Water Limitations and Water Quality Standards ... 22
 F. Total Maximum Daily Loads (TMDLs) .. 22
 G. Discharges Subject to the California Ocean Plan .. 26
 H. Training Qualifications ... 27
 I. Storm Water Pollution Prevention Plan (SWPPP) ... 29
 J. Monitoring and Reporting Requirements ... 42
 K. Exceedance Response Actions (ERAs) .. 55
 L. Inactive Mining Operations .. 66
 M. Compliance Groups and Compliance Group Leaders ... 66
 N. Annual Evaluation .. 68
 O. Annual Report ... 68
 P. Conditional Exclusion - No Exposure Certification (NEC) Requirements 68
 Q. Special Requirements - Plastic Materials ... 69
 R. Regional Water Board Authorities ... 70
 S. Special Conditions: Requirements for Dischargers Claiming the “No Discharge” Option in the Notice of Non-Applicability .. 71

FIGURES
 FIGURE 1: Example Waste Load Allocations Proposed Translation: Ballona Creek Estuary – Toxic Pollutants 23
 FIGURE 2: Five Phases for Developing and Implementing an Industrial Storm Water Pollution Prevention Plan (SWPPP) .. 31
 FIGURE 3: Compliance Determination Flowchart ... 45

TABLES
 TABLE 1: Role-Specific Permit Requirements ... 28
 TABLE 2: Example - Assessment of Potential Industrial Pollution Sources and Corresponding BMPs Summary . 32
I. BACKGROUND

A. Purpose

The purpose of this Fact Sheet is to explain the legal requirements and technical rationale that serve as the basis for the requirements of this Order 2014-0057-DWQ (General Permit), adopted by the State Water Resources Control Board (State Water Board) on April 1, 2014. This General Permit regulates operators of facilities subject to storm water permitting (Dischargers), that discharge storm water associated with industrial activity (industrial storm water discharges). This General Permit replaces Water Quality Order 97-03-DWQ. This Fact Sheet does not contain any independently-enforceable requirements; the General Permit contains all of the actual requirements applicable to Dischargers. In case of any conflict between the Fact Sheet and the General Permit, the terms of the General Permit govern.

B. History

The Federal Clean Water Act (CWA)\(^1\) prohibits discharges from point sources to waters of the United States, unless the discharges are in compliance with a National Pollutant Discharge Elimination System (NPDES) permit. (CWA § 301(a).) In 1987, the CWA was amended to establish a framework for regulating municipal storm water discharges and discharges of storm water associated with industrial activity (industrial storm water discharges) under the NPDES program. (CWA § 402(p).) In 1990, the United States Environmental Protection Agency (U.S. EPA) promulgated regulations, commonly known as Phase I, establishing application requirements for storm water permits for specified categories of industries. (40 C.F.R. § 122.26.) In 1992, U.S. EPA revised the monitoring requirements for industrial storm water discharges. (40 C.F.R. § 122.44(i)(2), (4), (5).) In 1999, U.S. EPA adopted additional storm water regulations, known as Phase II. (64 Fed. Reg. 68722.) The Phase II regulations provide for, among other things, a conditional exclusion from NPDES permitting requirements for industrial activities that have no exposure to storm water.

Industrial storm water discharges are regulated pursuant to CWA section 402(p)(3)(A). This provision requires NPDES permits for industrial storm water discharges to implement CWA section 301, which includes requirements for Dischargers to comply with technology-based effluent limitations, and any more stringent water quality-based limitations necessary to meet water quality standards. Technology-based effluent limitations applicable to industrial activities are based on best conventional pollutant control technology (BCT) for conventional pollutants, and best available technology economically achievable (BAT) for toxic and non-conventional pollutants. (CWA § 301(b)(1)(A) and (2)(A).) To ensure compliance with water quality standards, NPDES permits may also require a Discharger to implement best management practices (BMPs). 40 Code of Federal Regulations section 122.44(k)(4) requires the use of BMPs to control or abate the discharge of pollutants when numeric effluent limitations (NELs) are infeasible. The State Water Board has concluded that it is infeasible to establish

\(^1\) Federal Water Pollution Control Act of 1970 (also referred to as the Clean Water Act or CWA), 33 U.S.C. § 1201 et seq. All further statutory references herein are to the CWA unless otherwise indicated.
NELs for storm water discharges associated with industrial activity due to insufficient information at the time of adoption of this General Permit.

On April 17, 1997, the State Water Board issued NPDES General Permit for Industrial Storm Water Discharges, Excluding Construction Activities, Water Quality Order 97-03-DWQ (previous permit). This General Permit, Order 2014-0057-DWQ rescinds the previous permit and serves as the statewide general permit for industrial storm water discharges. The State Water Board concludes that significant revisions to the previous permit requirements are necessary for implementation, consistency and objective enforcement. As discussed in this Fact Sheet, this General Permit requires Dischargers to:

- Eliminate unauthorized non-storm water discharges (NSWDs);
- Develop and implement storm water pollution prevention plans (SWPPPs) that include best management practices (BMPs);
- Implement minimum BMPs, and advanced BMPs as necessary, to achieve compliance with the effluent and receiving water limitations of this General Permit;
- Conduct monitoring, including visual observations and analytical storm water monitoring for indicator parameters;
- Compare monitoring results for monitored parameters to applicable numeric action levels (NALs) derived from the U.S. EPA 2008 Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (2008 MSGP) and other industrial storm water discharge monitoring data collected in California;
- Perform the appropriate Exceedance Response Actions (ERAs) when there are exceedances of the NALs; and,
- Certify and submit all permit-related compliance documents via the Storm Water Multiple Application and Report Tracking System (SMARTS). Dischargers shall certify and submit these documents which include, but are not limited to, Permit Registration Documents (PRDs) including Notices of Intent (NOIs), No Exposure Certifications (NECs), and Storm Water Pollution Prevention Plans (SWPPPs), as well as Annual Reports, Notices of Termination (NOTs), Level 1 ERA Reports, and Level 2 ERA Technical Reports.

C. Blue Ribbon Panel of Experts (Panel)

In 2005 and 2006, the State Water Board convened a Blue Ribbon Panel of Experts (Panel) to address the feasibility of NELs in California’s storm water permits. Specifically, the Panel was charged with answering the following questions:

Is it technically feasible to establish numeric effluent limitations, or some other quantifiable limit, for inclusion in storm water permits?
How would such limitations or criteria be established, and what information and data would be required?

The Panel was directed to answer these questions for industrial storm water discharge general permits, construction storm water discharge general permits, and area-wide municipal storm water discharge permits. The Panel was also directed to address both technology-based and water quality based limitations and criteria.

In evaluating the establishment of numeric limitations and criteria, the Panel was directed to consider all of the following:

- The ability of the State Water Board to establish appropriate objective limitations or criteria;
- How compliance is to be determined;
- The ability of Dischargers and inspectors to monitor for compliance; and
- The technical and financial ability of Dischargers to comply with the limitations or criteria.

Following an opportunity for public comment, the Panel identified several water quality concerns, public process and program effectiveness issues. A summary of the Panel’s recommendations regarding industrial storm water discharges follows:

- Current data are inadequate; accordingly, the State Water Board should improve monitoring requirements to collect useful data for establishing NALs and NELs.
- Required parameters for further monitoring should be consistent with the type of industrial activity (i.e., monitor for heavy metals when there is a reasonable expectation that the industrial activity will contribute to increased heavy metals concentrations in storm water).
- Insofar as possible, the use of California data (or national data applicable to California) is preferred when setting NELs and NALs.
- Industrial facilities that do not discharge to Municipal Separate Storm Sewer Systems (MS4s) should implement BMPs for their non-industrial exposure (e.g., parking lots, roof runoff) similar to BMPs implemented by commercial facilities in MS4 jurisdictions.

3 See footnote 2.
• In all cases, Dischargers should implement a suite of minimum BMPs, including, but not limited to, good housekeeping practices, employee training, and preventing exposure of materials to rain.

• Standard Industrial Classification (SIC) code categories are not a satisfactory way of identifying industrial activities at any given site. The State Water Board should develop an improved method of characterizing industrial activities that will improve water quality in storm water.

• Recognizing that implementing the Panel's suggested changes is a large task, the State Water Board should set priorities for implementation of the Panel's suggested approach in order to achieve the greatest reduction of pollutants statewide.

• Recognizing that an increasing number of industries have moved industrial activities indoors to prevent storm water pollution, such facilities should be granted regulatory relief from NALs and/or NELs, but should still be required to comply with any applicable MS4 permit requirements.

• Recognizing the need for improved monitoring and reduction of pollutants in industrial storm water discharges, the State Water Board should consider the total economic impact of its requirements to not economically penalize California industries when compared to industries outside of California.

With regard to the industrial activities component of its charge, the Panel limited its focus to the question of whether sampling data can be used to derive technology-based NELs. The Panel did not address other factors or approaches that may relate to the task of determining technology- and water quality-based NELs consistent with the regulations and law. Examples of these other factors are discussed in more detail in this Fact Sheet. Additionally, in its final report the Panel did not clearly differentiate between the role of numeric and non-numeric effluent limitations, nor did it consider U.S. EPA procedures used to promulgate effluent limitation guidelines (ELGs) in 40 Code of Federal Regulations, Chapter I, Subchapter N (Subchapter N).

D. Summary of Significant Changes in this General Permit

The previous permit issued by the State Water Board on April 17, 1997, had been administratively extended since 2002 until the adoption of this General Permit. Significant revisions to the previous permit were necessary to update permit requirements consistent with recent regulatory changes pertaining to industrial storm water under the CWA. This General Permit differs from the previous permit in the following areas:

1. Minimum Best Management Practices (BMPs)

 This General Permit requires Dischargers to implement a set of minimum BMPs. Implementation of the minimum BMPs, in combination with any advanced BMPs (BMPs, collectively,) necessary to reduce or prevent pollutants in industrial storm water discharges, serve as the basis for compliance with this General Permit’s
Technology-based effluent limitations and water quality based receiving water limitations. Although there is great variation in industrial activities and pollutant sources between industrial sectors and, in some cases between operations within the same industrial sector, the minimum BMPs specified in this General Permit represent common practices that can be implemented by most facilities.

The previous permit did not require a minimum set of BMPs but rather allowed Dischargers to consider which non-structural BMPs should be implemented and which structural BMPs should be considered for implementation when non-structural BMPs are ineffective.

This General Permit requires Dischargers to implement minimum BMPs (which are mostly non-structural BMPs), and advanced BMPs (which are mostly structural BMPs) when implementation of the minimum BMPs do not meet the requirements of the General Permit. Advanced BMPs consists of treatment control BMPs, exposure reduction BMPs, and storm water containment and discharge reduction BMPs. BMPs that exceed the performance expectation of minimum BMPs are considered advanced BMPs. Dischargers are encouraged to utilize advanced BMPs that infiltrate or reuse storm water where feasible.

The minimum and advanced BMPs required in this General Permit are consistent with U.S. EPA’s 2008 Multi-Sector General Permit for Stormwater Discharges Associated with Industrial Activity (2008 MSGP), guidance developed by the California Stormwater Quality Association, and recommendations by Regional Water Quality Control Board (Regional Water Board) inspectors. Dischargers are required to evaluate BMPs being implemented and determine an appropriate interval for the implementation and inspection of these BMPs.

2. Conditional Exclusion - No Exposure Certification (NEC)

This General Permit applies U.S. EPA Phase II regulations regarding a conditional exclusion for facilities that have no exposure of industrial activities and materials to storm water. (40 C.F.R. § 122.26(g).) (The previous permit required light industries to obtain coverage only if their activities were exposed to storm water.) This General Permit implements current U.S. EPA rules allowing any type of industry to claim a conditional exclusion. The NEC requires enrollment for coverage prior to conditionally excluding a Discharger from a majority of this General Permit’s requirements.

3. Electronic Reporting Requirements

This General Permit requires Dischargers to submit and certify all reports electronically via SMARTS. The previous permit used a paper reporting process with electronic reporting as an option.

4. Training Expectations and Roles

This General Permit requires that Dischargers arrange to have appropriately trained personnel implementing this General Permit’s requirements at each facility. In
addition, if a Discharger’s facility enters Level 1 status, the Level 1 ERA Report must be prepared by a Qualified Industrial Storm Water Practitioner (QISP). All Action Plans and Technical Reports required in Level 2 status must also be prepared by a QISP.

Dischargers may appoint a staff person to complete the QISP training or may contract with an outside QISP. QISP training is tailored to persons with a high degree of technical knowledge and environmental experience. Although QISPs do not need to be California licensed professional engineers, it may be necessary to involve a California licensed professional engineer to perform certain aspects of the Technical Reports.

5. Numeric Action Levels (NALs) and NAL Exceedances

This General Permit contains two types of NAL exceedances. An annual NAL exceedance occurs when the average of all sampling results within a reporting year for a single parameter (except pH) exceeds the applicable annual NAL. The annual NALs are derived from, and function similarly to, the benchmark values provided in the 2008 MSGP. Instantaneous maximum NALs target hot spots or episodic discharges of pollutants. An instantaneous maximum NAL exceedance occurs when two or more analytical results from samples taken for any parameter within a reporting year exceed the applicable instantaneous maximum NAL value. Instantaneous maximum NALs for Total Suspended Solids (TSS) and Oil and Grease (O&G) are based on previously gathered California industrial storm water discharge monitoring data. The instantaneous maximum NAL for pH is derived from the benchmark value provided in the 2008 MSGP.

6. Exceedance Response Actions (ERA)

This General Permit requires Dischargers to develop and implement ERAs, when an annual NAL or instantaneous maximum NAL exceedance occurs during a reporting year. The first time an annual NAL or instantaneous maximum NAL exceedance occurs for any one parameter, a Discharger’s status is changed from Baseline to Level 1 status, and the Discharger is required to evaluate and revise, as necessary, its BMPs (with the assistance of a QISP) and submit a report prepared by a QISP. The second time an annual NAL or instantaneous maximum NAL exceedance occurs for the same parameter in a subsequent reporting year, the Discharger’s status is changed from Level 1 to Level 2 status, and Dischargers are required to submit a Level 2 ERA Action Plan and a Level 2 ERA Technical Report. Unless the demonstration is not accepted by the State Water Board or a Regional Water Board, the Discharger is not required to perform additional ERA requirements for the parameter(s) involved if the Discharger demonstrates that:

a. Additional BMPs required to eliminate NAL exceedances are not technologically available or economically practicable and achievable; or,

b. NAL exceedances are solely caused by non-industrial pollutant sources; or,
c. NAL exceedances are solely attributable to pollutants from natural background sources.

Information supporting the above demonstrations must be included in QISP-prepared Level 2 ERA Technical Reports.

7. CWA section 303(d) Impairment

This General Permit requires a Discharger to monitor additional parameters if the discharge(s) from its facility contributes pollutants to receiving waters that are listed as impaired for those pollutants (CWA section 303(d) listings). This General Permit lists the receiving waters that are 303(d) listed as impaired for pollutants that are likely to be associated with industrial storm water in Appendix 3. For example, if a Discharger discharges to a water body that is listed as impaired for copper, and the discharge(s) from its facility has the potential sources of copper, the Discharger must add copper to the list of parameters to monitor in its storm water discharge.

8. Design Storm Standards for Treatment Control BMPs

This General Permit includes design storm standards for Dischargers implementing treatment control BMPs. The design storm standards include both volume- and flow-based criteria. Dischargers are not required to retrofit existing treatment control BMPs unless required to meet the technology-based effluent limitations and receiving water limitations in this General Permit.

9. Qualifying Storm Event (QSE)

This General Permit defines a QSE as a precipitation event that:

a. Produces a discharge for at least one drainage area; and,

b. Is preceded by 48 hours with no discharge from any drainage area.

The definition above differs from the definition in the previous permit, resulting in an increase number of QSEs eligible for sample collection. Therefore, most Dischargers will be able to collect the required number of samples, regardless of their facility location.

10. Sampling Protocols

This General Permit requires Dischargers to collect samples during scheduled facility operating hours from each drainage location within four hours of: (1) the start of the discharge from a QSE occurring during scheduled facility operating hours, or (2) the start of scheduled facility operating hours if the QSE occurred in the previous twelve (12) hours. The benefits of this sampling protocol: (a) allows a more reasonable amount of time to collect samples, (b) increases the likelihood for samples collected at discharge locations to be representative of the drainage area discharge characteristics, (c) increases the number of QSEs eligible for sample collection, and, (d) reduces the likelihood of Dischargers collecting samples with short-term concentration spikes.
The previous permit required that Dischargers collect grab samples during the first hour of discharge that commenced during scheduled facility operating hours. These sample collection requirements were widely considered to be too rigid and out of step with other states’ sample collection requirements. Since many storm events begin in the evening or early morning hours, numerous opportunities to collect samples were lost because Dischargers could not obtain samples during the first hour of discharge. Dischargers with facilities that have multiple discharge locations had difficulties collecting samples within such a short timeframe therefore affecting data quality.

11. Sampling Frequency

This General Permit increases the sampling frequency by requiring the Discharger to collect and analyze storm water samples from each discharge location for two (2) QSEs within the first half of each reporting year (July 1 to December 31), and two (2) QSEs within the second half of each reporting year (January 1 to June 30). The increased sampling, compared to the previous permit’s two samples during the wet season, is consistent with the 2008 MSGP and other states’ permit requirements and will improve compliance determination with this General Permit. The State Water Board expects that the elimination of the wet season sampling requirements will increase the number of possible QSEs eligible for monitoring.

12. Compliance Groups

To allow industrial facilities to efficiently share knowledge, skills and resources towards achieving General Permit compliance, this General Permit allows the formation of Compliance Groups and Compliance Group Leaders. Dischargers participating in a Compliance Group (Compliance Group Participants) are collectively required to sample twice a year. Compliance Group Leaders are required to be approved through the State Water Board-approved training program process, inspect each facility once within each reporting year, and prepare Level 1 and Level 2 ERA reports as necessary. The Compliance Group option is described in more detail in General Permit section XIV and in this Fact Sheet in the Section titled “Compliance Groups.”

13. Discharges to Ocean Waters

This General Permit requires Dischargers with ocean-discharging outfalls subject to model monitoring provisions of the California Ocean Plan to develop and implement a monitoring plan in compliance with those provisions and any additional monitoring requirements established pursuant to Water Code section 13383. Dischargers who have not developed and implemented a monitoring program in compliance with the California Ocean Plan model monitoring provisions by July 1, 2015 or seven (7) days prior to commencing operations, whichever is later, are ineligible to obtain coverage under this General Permit.
II. TECHNICAL RATIONALE FOR REQUIREMENTS IN THIS GENERAL PERMIT

A. Receiving General Permit Coverage

1. This General Permit provides regulatory coverage for new and existing industrial storm water discharges and authorized NSWDs from:
 a. Facilities required by federal regulations to obtain an NPDES permit;
 b. Facilities designated by the Regional Water Boards to obtain an NPDES permit; and,
 c. Facilities directed by the Regional Water Boards to obtain coverage specifically under this General Permit. The Regional Water Board typically directs a Discharger to change General Permit coverage under two circumstances:
 (1) switch from an individual NPDES permit to this General Permit, or
 (2) switch from the NPDES General Permit for Storm Water Discharges Associated with Construction And Land Disturbance Activities, (Order 2009-0009-DWQ, NPDES No. CAS000002 (to this General Permit for long-term construction related activities that are similar to industrial activities (e.g. concrete batch plants).

40 Code of Federal Regulations section 122.26(b)(14) defines "storm water discharge associated with industrial activity" and describes the types of facilities subject to permitting (primarily by Standard Industrial Classification (SIC) code). This General Permit provides regulatory coverage for all facilities with industrial activities described in Attachment A where the covered industrial activity is the Discharger's primary industrial activity. In some instances, a Discharger may have more than one primary industrial activity occurring at a facility.

The 1987 SIC manual uses the term “establishment” to determine the primary economic activity of a facility. The manual instructs that where distinct and separate economic activities are performed at a single location, each activity should be treated as a separate establishment (and, therefore, separate primary activity). For example, the United States Navy (primary SIC code 9711) may conduct industrial activities subject to permitting under this General Permit, such as landfill operations (SIC code 4953), ship and boat building and repair (SIC code 3731, and flying field operations (SIC code 4581).

The SIC manual also discusses “auxiliary” functions of establishments. Auxiliary functions provide management or support services to the establishment. Examples of auxiliary functions are warehouses and storage facilities for the establishment’s own materials, maintenance and repair shops of the establishment’s own machinery, automotive repair shops or storage garages of the establishment’s own vehicles, administrative offices, research, development, field engineering support, and testing conducted for the establishment. When auxiliary functions are performed at physically separate facilities from the establishment they serve, they generally are not subject to General Permit coverage. If
auxiliary functions are performed at the same physical location as the establishment, then they are subject to General Permit coverage if they are associated with industrial activities.

This clarification does not change the scope of which facilities are subject to permitting relative to the 1997 IGP. The 1997 IGP Fact Sheet had used the term “auxiliary” to describe a facility’s separate primary activities, which has caused confusion.

In 1997, the North American Industrial Classification System (NAICS) was published, replacing the SIC code system. The U.S. EPA has indicated that it intends to incorporate the NAICS codes into the federal storm water regulations but has not done so yet. The State Water Board recognizes that many Dischargers in newer industries were not included in the 1987 SIC code manual and may have difficulty determining their SIC code information. To address this transition, SMARTS has been modified to accept both SIC codes and NAICS codes, and NAICS codes are automatically translated into SIC codes. There may be instances of conflict between SIC and NAICS codes. The use of NAICS codes shall not expand or reduce the types of industries subject to this General Permit as compared to the SIC codes listed in the General Permit. State Water Board staff will work closely with the applicant to resolve these conflicts in SMARTS as they are identified. Dischargers should be aware that the use of an NAICS code which results in failure to submit any of the required PRDs under this General Permit remains a violation of the terms of this General Permit.

The facilities included in category one of Attachment A (facilities subject to Subchapter N) are subject to storm water ELGs that are incorporated into the requirements of this General Permit. Dischargers whose facilities are included in this category must examine the appropriate federal ELGs to determine the applicability of those guidelines. This General Permit contains additional requirements (Section XI.D) that apply only to facilities with storm water ELGs.

2. Types of Discharges Not Covered by this General Permit

a. Discharges from construction and land disturbance activities that are subject to the General Permit for Discharges of Storm Water Associated with Construction Activity (Construction General Permit).

b. Discharges covered by an individual or general storm water NPDES permit. Some industrial storm water discharges may be regulated by other individual or general NPDES permits issued by the State Water Board or the Regional Water Boards (Water Boards, collectively,). This General Permit shall not regulate these discharges. When the individual or general NPDES permits for such discharges expire, the Water Boards may authorize coverage under this General Permit or another general NPDES permit, or may issue a new individual NPDES permit consistent with the federal and state storm water regulations. Interested parties may request that the State Water Board or appropriate Regional Water Board issue individual or general NPDES permits for specific discharges that, in their view are not properly regulated through this General Permit. General permits may be issued for a particular industrial group or watershed area which...
would supersede this General Permit. To date, two Regional Water Board have issued such permits:

i. The Lahontan Regional Water Board has adopted an NPDES permit and general Waste Discharge Requirements to regulate discharges from marinas and maintenance dredging (Regional Water Board Order R6T-2005-0015 - NPDES Permit No. CAG616003) in the Lake Tahoe Hydrologic Unit.

ii. The Santa Ana Regional Water Board adopted the Sector Specific General Permit for Stormwater Runoff Associated with Industrial Activities from Scrap Metal Recycling Facilities within the Santa Ana Region, Order R8-2012-0012, NPDES Permit No. CAG 618001 (Scrap Metal Recycling Permit). The Scrap Metal Recycling Permit is applicable to facilities within the Santa Ana Region that are listed under Standard Industrial Classification (SIC) Code 5093 and engaged in the following types of activities: (1) automotive wrecking for scrap-wholesale (this category does not include facilities engaged in automobile dismantling for the primary purpose of selling second hard parts); (2) iron and steel scrap - wholesale; (3) junk and scrap metal - wholesale; (4) metal waste and scrap - wholesale; and (5) non-ferrous metals scrap - wholesale. Other types of facilities listed under SIC Code 5093 and engaged in waste recycling are not required to get coverage under the Scrap Metal Recycling Permit. A list of covered facilities as of February 8, 2011 was included in Attachment A of the Scrap Metal Recycling Permit.

c. Discharges that the Regional Water Boards determine to be ineligible for coverage under this General Permit. In such cases, a Regional Water Board will require the discharges be covered by another individual or general NPDES permit. The applicability of this General Permit to such discharges is terminated when the discharge is subject to another individual or general NPDES permit.

d. Discharges that do not enter waters of the United States. These include:

 i. Discharges to municipal separate sanitary sewer systems;

 ii. Discharges to evaporation ponds, discharges to percolation ponds, and/or any other methods used to retain and prevent industrial storm water discharges from entering waters of the United States;

 iii. Discharges to combined sewer systems. In California, the only major combined sewer systems are located in San Francisco and downtown Sacramento. Dischargers who believe they discharge into a combined sewer system should contact the local Regional Water Board to verify discharge location; and,

 iv. Dischargers Claiming the “No Discharge” Option in the Notice of Non-Applicability (NONA) (Fact Sheet Section II.S).

 e. Discharges from mining operations or oil and gas facilities composed entirely of flows that are from conveyances or systems of conveyances used for collecting and conveying precipitation runoff and do not come into contact with any overburden, raw materials, intermediate products, finished products, by-products, or waste products located at the facility. (33 U.S.C. § 1342(l)(2).)

 f. Discharges from facilities on Tribal Lands regulated by U.S. EPA.
3. Obtaining General Permit Coverage (Section II of this General Permit)

The State Water Board has developed the SMARTS online database system to handle registration and reporting under this General Permit. More information regarding SMARTS and access to the database is available online at https://smarts.waterboards.ca.gov. The State Water Board has determined that all documents related to general storm water enrollment and compliance must be certified and submitted via SMARTS by Dischargers.

This General Permit requires all Dischargers to electronically certify and submit PRDs via SMARTS to obtain: (1) regulatory coverage, or (2) to certify that there are no industrial activities exposed to storm water at the facility and obtain regulatory coverage under the NEC provision of this General Permit. Facilities that were eligible to self-certify no exposure under the previous permit (see category 10 in Attachment 1 of the previous permit) are required to certify and submit via SMARTS PRDs for NOI coverage under this General Permit by July 1, 2015 or for NEC coverage by October 1, 2015. The Water Board is estimating that 10,000 – 30,000 Dischargers may be registering for NOI or NEC coverage under this General Permit. Separate registration deadlines, one for NOI coverage and one for NEC coverage, provides Dischargers better assistance from Storm Water Helpdesk and staff.

Dischargers shall electronically certify and submit the PRDs via SMARTS for each individual facility. This requirement is intended to establish a clear accounting of the name, address, and contact information for each Discharger, as well as a description of each Discharger’s facility.

The Water Boards recognize that certain information pertaining to an industrial facility may be confidential. Many Stakeholders were asking for clarification on the process the Water Boards would use to manage confidential information or the process Dischargers could use to redact such information. Dischargers may redact trade secrets information from required submittals (Section II.B.3.d). Dischargers are required to include a general description of the redacted information and the basis for the redaction. Dischargers are still required to submit complete and un-redacted versions of the information to the Water Boards within 30 days, however these versions should be clearly labeled “CONFIDENTIAL” so that the confidentiality of these documents is clear to Regional Water Board staff, even when there is a change in staff. This General Permit requires that all information provided to the Water Boards by the Discharger comply with the Homeland Security Act and other federal law that addresses security in the United States.

All Dischargers who certify and submit PRDs via SMARTS for NOI coverage on or after July 1, 2015 or for NEC coverage on or after October 1, 2015, shall immediately comply with the provisions in this General Permit.

4. General Permit Coverage for Landfills

This General Permit covers storm water discharges from landfills, land application sites, and open dumps that receive or have received industrial waste from any facility covered by this General Permit. Industrial storm water discharges from these...
facilities must be covered by this General Permit unless (1) they are already covered by another NPDES permit, or (2) the Regional Water Board has determined that an NPDES permit is not required because the site has been stabilized or required closure activities have been completed.

In most cases, it is appropriate for new landfill construction or final closure to be covered by the Construction General Permit, rather than this General Permit.
Questions have arisen as to what constitutes new landfill construction at an existing landfill versus the normal planned expansion of a landfill. Similarly, questions have arisen about the type of closure activities that may be subject to the Construction General Permit versus the normal closure of “cells” that occurs during continued landfill operations and are not subject to the Construction General Permit. Other questions such as whether temporary or permanent newly graded/paved roads disturbing greater than one acre at a landfill are subject to the Construction General Permit. Landfill Dischargers have asked for clarity regarding these questions. The previous permit required Dischargers to contact the Regional Water Boards to determine permit appropriateness. Site specific circumstances continue to require Dischargers to contact Regional Water Boards for final determinations.

Based upon the State Water Board’s storm water program history, there are only a handful of instances where an operating landfill has been simultaneously subject to both the construction and industrial permitting requirements. Typically a landfill is subject to the construction permitting requirements during the time the landfill is initially constructed and prior to operation. A landfill is subject to the industrial permitting requirements during landfill operations, and subject to the construction permitting requirements during final landfill closure activities.

Once a landfill begins operations, continued expansion or closure of incremental landfill cells is authorized under the industrial permitting requirements since these are normal aspects of landfill operations. These expansion/closure activities occur within a limited timeframe (often taking less than 90 days from beginning to end) and are not separately subject to additional local approval (e.g., a new building permit). Any construction or demolition of temporary non-impervious roads directly related to landfill operations are subject to the industrial permitting requirements.

Construction or closure of a separate section of the landfill that is either subject to additional permitting by the local authorities and/or lasts more than 90 days requires coverage under the Construction General Permit. Construction of permanent facility structures such as buildings and impervious parking lots or roads that disturb greater than one acre are also subject to the Construction General Permit. (Permanent facility structures are defined as any structural improvements designed to remain until the landfill is closed.)

Site specific circumstances such as proximity to nearby waterways, extent of activities, pollutants of concern, and other considerations can impact any decision as to whether a particular activity is to be regulated under this General Permit or the Construction General Permit. Regional Water Boards will continue to exercise their discretion as necessary to protect the beneficial uses of the receiving water(s).
5. General Permit Coverage for Small Municipal Separate Storm Sewer Systems (MS4s)

Section 1068 of the Intermodal Surface Transportation Efficiency Act of 1991 exempted municipal agencies serving populations of less than 100,000 from Phase I permit requirements other than sanitary landfills, power plants, and airports facilities. U.S. EPA’s Phase II regulations eliminated the above exemption as of March 10, 2003. All facilities in Attachment A of this General Permit that are operated by a small municipal agency are subject to NPDES storm water permitting requirements and this General Permit.

6. Changes to General Permit Coverage

Dischargers who no longer operate a facility required to be covered under this General Permit (either NOI or NEC coverage) are required to electronically certify and submit via SMARTS a Notice of Termination (NOT). An NOT is required when there is a change in ownership of the industrial activities subject to permitting or when industrial activities subject to permitting are permanently discontinued by the Discharger at the site. When terminating NOI coverage, Dischargers may only submit an NOT once all exposure of industrial materials and equipment have been eliminated. Dischargers may not submit NOTs for temporary or seasonal facility closures. The General Permit requires Dischargers to implement appropriate BMPs to reduce or prevent pollutants in storm water discharges during the temporary facility closure.

This General Permit allows Dischargers to change General Permit coverage, as appropriate, from NOI coverage to NEC coverage or from NEC coverage to NOI coverage.

B. Discharge Prohibitions

This General Permit covers industrial storm water discharges and authorized NSWDs from industrial facilities and prohibits any discharge of materials other than storm water and authorized NSWDs (Section III and Section IV of this General Permit). It is a violation of this General Permit to discharge hazardous substances in storm water in excess of the reportable quantities established in 40 Code of Federal Regulations sections 117.3 and 302.4.

The State Water Board is authorized, under Water Code section 13377, to issue NPDES permits which apply and ensure compliance with all applicable provisions of the CWA, and any more stringent limitations necessary to implement water quality control plans, protect beneficial uses, and prevent nuisance.

C. Non-Storm Water Discharges (NSWDs)

Unauthorized NSWDs can be generated from various pollutant sources. Depending upon their quantity and location where generated, unauthorized NSWDs can discharge to the storm drain system during dry weather as well as during a storm event (commingled with storm water discharge). These NSWDs can consist of, but are not limited to; (1) waters generated by the rinsing or washing of vehicles, equipment,
buildings, or pavement, or (2) fluid, particulate or solid materials that have spilled, leaked, or been disposed of improperly.

Some NSWDs are not directly related to industrial activities and normally discharge minimal pollutants when properly managed. Section IV of this General Permit provides a limited list of NSWDs that are authorized if Dischargers implement BMPs to prevent contact with industrial materials prior to discharge. The list in Section IV is similar to the list provided in the 2008 MSGP but does not include pavement and external building surfaces washing without detergents. These two items are not included because the Discharger is responsible to reduce or prevent pollutants in storm water discharges from paved areas and buildings associated with industrial activities. Since industrial materials and non-industrial material likely co-exist, the washing of paved areas and external building surfaces may result in discharges of pollutants associated with industrial activities. In addition, washing activities generally occur during dry-weather periods when receiving water flows are lower than wet-weather periods. Wash waters are likely to discharge in higher concentrations than would occur if these pollutants were naturally discharged during a storm event. The discharge of high concentration wash water during a time of dry-weather flows is inconsistent with the goal of protecting receiving waters. These discharges are, therefore, considered unauthorized NSWDs. Similar to the 2008 MSGP, firefighting related discharges are not subject to this General Permit.

A major required element of the SWPPP is the identification and measures for elimination of unauthorized NSWDs. Unauthorized NSWDs can contribute a significant pollutant load to receiving waters. Measures to control spills, leakage, and dumping can often be addressed through BMPs. This General Permit’s BMP requirements for NSWDs remain essentially unchanged from the previous permit other than the increased frequency of required visual observations from quarterly to monthly. See Section XI.A.1 of this General Permit.

D. Effluent Limitations

1. Technology-Based and Water Quality-Based Effluent Limitations

 CWA Section 301(b)(1)(C) requires that discharges from existing facilities must, at a minimum, comply with technology-based effluent limitations based on the technological capability of Dischargers to control pollutants in their discharges. Discharges must also comply with any more stringent water quality-based limitations necessary to meet water quality standards in accordance with CWA Section 301(b)(1)(C). Water quality-based limitations are discussed in Section E of this Fact Sheet titled “Receiving Water Limitations.” Both technology-based effluent limitations and water quality-based limitations are implemented through NPDES permits. (CWA sections 301(a) and (b).)

2. Types of Technology-Based Effluent Limitations

 All NPDES permits are required to contain technology-based effluent limitations (TBELs). (40 C.F.R. §§122.44(a)(1) and 125.3.) TBELs may consist of effluent limitations guidelines (ELGs) established by U.S. EPA through regulation, or may be developed using best professional judgment on a case-by-case basis.
Industrial General Permit Fact Sheet

The CWA sets forth standards for TBELs based on the type of pollutant or the type of facility/source involved. The CWA establishes two levels of pollution control for existing sources. For the first level, existing sources that discharge pollutants directly to receiving waters were initially subject to effluent limitations based on the "best practicable control technology currently available" (BPT). (33 U.S.C. § 1314(b)(1)(B).) BPT applies to all pollutants. For the second level, existing sources that discharge conventional pollutants are subject to effluent limitations based on the "best conventional pollutant control technology" (BCT). (33 U.S.C. §1314(b)(4)(A); see also 40 C.F.R. §401.16 (list of conventional pollutants).) Also for the second level, other existing sources that discharge toxic pollutants or "nonconventional" pollutants ("nonconventional" pollutants are pollutants that are neither “toxic” nor “conventional”) are subject to effluent limitations based on “best available technology economically achievable” (BAT). (33 U.S.C. §1311(b)(2)(A); see also 40 C.F.R. §401.15 (list of toxic pollutants).) The factors to be considered in establishing the levels of these control technologies are specified in section 304(b) of the CWA and in U.S. EPA’s regulations at 40 C.F.R. §125.3.

When establishing ELGs for an industrial category, U.S. EPA evaluates a wide variety of technical factors to determine BPT, BCT, and BAT. U.S. EPA considers the specific factors of an industry such as pollutant sources, industrial processes, and the size and scale of operations. U.S. EPA evaluates the specific treatment, structural, and operational source control BMPs available to reduce or prevent pollutants in the discharges. The costs of implementing BMPs to address these factors are weighed against their effectiveness and ability to protect water quality. Factors such as industry economic viability, economies of scale, and retrofit costs are also considered.

To date, U.S. EPA has: (1) not promulgated storm water ELGs for most industrial categories, (2) not established NELs within all ELGs that have been promulgated, and (3) exempted certain types of facilities within an industrial category from complying with established ELGs. The feedlot category (40 Code of Federal Regulations part 412) provides an example of several of these points. In that instance, U.S. EPA did not establish numeric effluent limitations but instead: (1) established a narrative effluent limitation requiring retention of all feedlot-related runoff from a 25-year, 24-hour storm, and (2) limited application of the ELG to feedlots with a minimum number of animals. U.S. EPA also recently promulgated ELGs for the "Construction and Development (C&D)" industry, which included, among many other limitations, conditional numeric effluent limitations. Though the NELs in these ELGs were later stayed by U.S. EPA, the ELGs exempted construction sites of less than 30 acres from complying with the established numeric effluent limitations.

40 Code of Federal Regulations, Chapter I, Subchapter N (“Subchapter N”), includes over 40 separate industrial categories where the U.S. EPA has established ELGs for new and existing industrial wastewater discharges to surface waters, discharges to publicly owned treatment works (pre-treatment standards), and storm water discharges to surface waters. Generally, U.S. EPA has focused its efforts on the development of ELGs for larger industries and those industries with the greatest potential to pollute. In total, the 40 categories for which ELGs have been
established (not including construction) represent less than 10 percent of the types of facilities subject to this General Permit. Additionally, most ELGs focus on industrial process wastewater discharges and pre-treatment standards, and only 11 of the 40 categories establish numeric or narrative ELGs for industrial storm water discharges. Those that do include ELGs for industrial storm water discharges generally address storm water discharges that are generated from direct contact with primary pollutant sources at the subject facilities, and not the totality of the industrial storm water discharge from the facility, as the term “storm water discharge associated with industrial activity” for this General Order is defined in the CWA. (40 C.F.R. § 122.26(b)(14).) Where U.S. EPA has not issued effluent limitation guidelines for an industry, the State Water Board is required to establish effluent limitations for NPDES permits on a case-by-case basis based on best professional judgment (BPJ). (33 U.S.C. § 1342(a)(1); 40 C.F.R. § 125.3(c)(2).) In this General Permit, most of the TBELs are based on BPJ decision-making because no ELG applies.

The TBELs in this General Permit represent the BPT (for conventional, toxic, and non-conventional pollutants), BCT (for conventional pollutants), and BAT (for toxic pollutants and non-conventional pollutants) levels of control for the applicable pollutants. If U.S. EPA has not promulgated ELGs for an industry, or if a Discharger is discharging a pollutant not covered by the otherwise applicable ELG, the State Water Board is required to establish effluent limitations in NPDES permit limitations based on best professional judgment. (33 U.S.C. § 1342(a)(1); 40 C.F.R. 125.3(c).) This General Permit includes TBELs established on best professional judgment and limitations based on storm water-specific ELGs listed in Attachment F of this General Permit, where applicable.

3. Authority to Include Non-Numeric Technology-Based Limits in NPDES Permits

TBELs in this General Permit are based on best professional judgment and are non-numeric (“narrative”) technology-based effluent limitations expressed as requirements for implementation of effective BMPs. Federal regulations provide that permits must include BMPs to control or abate the discharge of pollutants when where “[n]umeric effluent limitations are infeasible.” 40 C.F.R. 122.44(k)(3).

Since 1977, courts have recognized that there are circumstances when numeric effluent limitations are infeasible and have held that EPA may issue permits with conditions (e.g., BMPs) designed to reduce the level of effluent discharges to acceptable levels. Natural Res. Def. Council, Inc. v. Costle, 568 F.2d 1369 (D.C.Cir.1977).

U.S. EPA has also interpreted the CWA to allow BMPs to take the place of numeric effluent limitations under certain circumstances. 40 C.F.R. §122.44(k), titled “Establishing limitations, standards, and other permit conditions (applicable to State NPDES programs ...),” provides that permits may include BMPs to control or abate the discharge of pollutants when: (1) “[a]uthorized under section 402(p) of the CWA for the control of stormwater discharges”; or (2) “[n]umeric effluent limitations are infeasible.” 40 C.F.R. § 122.44(k).
In 2006, The U.S. Court of Appeals for the Sixth Circuit held that the CWA does not require U.S. EPA to set numeric limits where such limits are infeasible. (Citizens Coal Council v. United States Environmental Protection Agency, 447 F.3d 879, 895-96 (6th Cir. 2006)). The Citizens Coal court cited to the statement in Waterkeeper Alliance, Inc. v. EPA, 399 F.3d 486, 502 (2d Cir. 2005) that “site-specific BMPs are effluent limitations under the CWA” in concluding that “the EPA’s inclusion of numeric and non-numeric limitations in the guideline for the coal remining subcategory was a reasonable exercise of its authority under the CWA.” (447 F.3d at 896.) Additionally, the Citizen’s Coal court cited to Natural Res. Def. Council, Inc. v. EPA, 673 F.2d 400, 403 (D.C.Cir.1982) noting that “section 502(11) [of the CWA] defines ‘effluent limitation’ as ‘any restriction’ on the amounts of pollutants discharged, not just a numerical restriction.” NPDES permit writers have substantial discretion to impose non-quantitative permit requirements pursuant to section 402(a)(1)), especially when the use of numeric limits is infeasible. (NRDC v. EPA, 822 F.2d 104, 122-24 (D.C. Cir. 1987); 40 C.F.R. 122.44(k)(3).)

4. Decision to Include Non-Numeric Technology-Based Effluent Limits in This General Permit

It is infeasible for the State Water Board to develop numeric effluent limitations using the best professional judgment approach due to lack of sufficient information. Previous versions of this General Permit required Dischargers to sample their industrial storm water discharges and report the results to the Regional Water Boards. Dischargers were not required to submit this data online into a statewide database; as a result, much of this data is not available for analysis. Moreover, much of the data that are available for analysis are not of sufficient quality to make conclusions or perform basic statistical tests.

The Blue Ribbon Panel of Experts, State Water Board staff, and many stakeholders evaluated the available storm water data set and concluded that the information provides limited value due to the limited pool of industrial facilities submitting data, poor overall data quality, and extreme variance within the dataset, as described below.

The poor quality of the existing data set is attributable a number of factors. For example, the previous permits have required Dischargers to sample during the first hour of discharge from two storm events a year. This sampling schedule was designed to catch what was considered to represent the higher end of storm water discharge concentrations for most parameters. The results from this type of sampling were thought to be an indicator of whether or not additional BMPs would be necessary. The sampling schedule was not designed, however, to estimate pollutant discharge loading, or to characterize the impact of the discharge on the receiving water. Doing so would normally require the use of more advanced sampling protocols such as flow meters, continuous automatic sampling devices, certified/trained sampling personnel, and other facility-specific considerations.

Furthermore, there is currently no data which details the relationship between the BMPs implemented at each facility and the facility’s sampling results. The SWPPPs required by the previous permits were not submitted to the Water Boards, but were
kept onsite by Dischargers. Due to the limited availability of quality sampling data and "level of effort" information contained in SWPPPs, the State Water Board is unable to exercise best professional judgment to make the connection between effluent quality (sampling results) and the level of effort, costs, and performance of the various technologies that is needed in order to express the TBELs in this General Permit numerically, as NELs.

Some stakeholders have suggested that separating the data sets by industry type would lead to more reliable data with which to develop NELs. Advocates of this approach suggest that the variability of the data may be caused in part by the mixing of data from different industrial categories. The State Water Board believes that the variation is primarily due to storm intensity, duration, time of year, soil saturation or some other factors. It is necessary to collect information related to those factors and BMPs implemented in order to evaluate the variability attributable to those factors. There is currently too large of an information gap to begin the process of developing NELs for all industrial sectors not currently subject to ELGs.

The State Water Board has proposed NELs in past drafts of this General Permit. In comments, many stakeholders have highlighted the difficulty of developing statewide NELs that are applicable to all industry sectors, or even NELs that cover any specific industry sectors. For example, stakeholders have commented that:

a. Background/ambient conditions in some hydrogeologic zones may contribute pollutant loadings that would significantly contribute to, if not exceed, the NEL values;

b. Some advanced treatment technologies have flow/volume limitations as well as economy of scale issues for smaller facilities;

c. Treatment technologies that require that sheet flows be captured and conveyed via discrete channels or basins may not only result in significant retrofit costs, but may conflict with local ordinances that prohibit such practices, as they can cause damage or erosion to down gradient property owners, or cause other environmental problems;

d. There is insufficient regulatory guidance and procedures to allow permit writers to properly specify monitoring frequency and sampling protocols (e.g., instantaneous maximum, 1-day average, 3-day average, etc.), and for Dischargers to obtain representative samples to compare to NELs for the purpose of strict compliance; and,

e. NELs must be developed with consideration of what is economically achievable for each industrial sector. These stakeholders point out that the U.S. EPA goes to great lengths evaluating the various BMP technologies available for a particular pollutant, the costs and efficiency of each BMP, and the applicability of the BMPs to the industry as a whole or to a limited number of industrial sites based upon the size of the facility, the quantity of material, and other considerations.
The State Water Board does not have the information (including monitoring data, industry specific information, BMP performance analyses, water quality information, monitoring guidelines, and information on costs and overall effectiveness of control technologies) necessary to promulgate NELs at the time of adoption of this General Permit. Therefore, it is infeasible to include NELs in this statewide General Permit.

Many of the new requirements in this General Permit have been designed to address the shortcomings of previous permits and the existing storm water data set. Under this General Permit, sampling results must be certified and submitted into SMARTS by Dischargers, along with SWPPPs which outline the technologies and BMPs used to control pollutants at each facility. The ERA process will also collect information on costs and the engineering aspects of the various control technologies employed by each facility. Previous permit versions did not have a mechanism for receiving this site specific information electronically, and only a small percentage of Dischargers submitted their Annual Reports via SMARTS. This General Permit will make this information more accessible, allowing the Water Boards to evaluate the relationship between BMPs and the ability of facilities to meet the NALs set forth in this General Permit. Finally, the new Qualified Industrial Storm Water Practitioner (QISP) training requirements of this General Permit have been designed in part to improve the quality of the data submitted.

5. Narrative Technology-Based Effluent Limitations (TBELs) and Best Management Practices (BMPs)

The primary TBEL in this General Permit requires Dischargers to “implement BMPs that comply with the BAT/BCT requirements of this General Permit to reduce or prevent discharges of pollutants in their storm water discharge in a manner that reflects best industry practice considering technological availability and economic practicability and achievability.” (Section V.A of this General Permit). This TBEL is a restatement of the BAT/BCT standard, as articulated by U.S. EPA in the 2008 MSGP and accompanying Fact Sheet. In order to comply with this TBEL, Dischargers must implement BMPs that meet or exceed the BAT/BCT technology-based standard. The requirement to “reduce or prevent” is equivalent to the requirement in the federal regulations that BMPs be used in lieu of NELs to “control or abate” the discharge of pollutants. (40 C.F.R. § 122.44(k).)

BMPs are defined as the “scheduling of activities, prohibitions of practices, maintenance procedures, and other management practices to reduce or prevent the discharge of pollutants… includ[ing] treatment requirements, operating procedures, and practices to control site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.” (40 C.F.R. § 122.2.)

This General Permit (Sections X.H.1 and X.H.2) requires all Dischargers to implement minimum BMPs, as well as any advanced BMPs that are necessary to adequately reduce or prevent pollutants in discharges consistent with the TBELs. The minimum BMPs specified in this General Permit represent common practices that can be implemented by most facilities. This General Permit generally does not mandate the specific mode of design, installation or implementation for the minimum BMPs at a Discharger’s facility. It is up to the Discharger, in the first instance, to
determine what must be done to meet the applicable effluent limits. For example, Section X.H.1.a.vi of this General Permit requires Dischargers to contain all stored non-solid industrial materials that can be transported or dispersed via wind or contact with storm water. How this is achieved will vary by facility: for some facilities, all activities may be moved indoors, while for others this will not be feasible. However, even for the latter, many activities may be moved indoors, others may be contained using tarps or a containment system, while still other activities may be limited to times when exposure to precipitation is not likely. Each of these control measures is acceptable and appropriate depending upon the facility-specific circumstances.

BMPs can be actions (including processes, procedures, schedules of activities, prohibitions on practices and other management practices), or structural or installed devices to reduce or prevent water pollution. (40 C.F.R. § 122.2.) They can be just about anything that is effective at preventing pollutants from entering the environment, and for meeting applicable limits of this General Permit. In this General Permit, Dischargers are required to select, design, install, and implement facility-specific control measures to meet these limits. Many industrial facilities already have such control measures in place for product loss prevention, accident and fire prevention, worker health and safety or to comply with other environmental regulations. Dischargers must tailor the BMPs detailed in this General Permit to their facilities, as well as improve upon them as necessary to meet permit limits. The examples detailed in this Fact Sheet emphasize prevention over treatment. However, sometimes more traditional end-of-pipe treatment may be necessary, particularly where a facility might otherwise cause or contribute to an exceedance of water quality standards.

This General Permit requires Dischargers to implement BMPs “to the extent feasible.” Consistent with the control level requirements of the CWA, for the purposes of this General Permit, the requirement to implement BMPs “to the extent feasible” means to reduce and/or prevent discharges of pollutants using BMPs that represent BAT and BPT in light of best industry practice. In other words, Dischargers are required to select, design, install and implement BMPs that reduce or prevent discharges of pollutants in their storm water discharge in a manner that reflects best industry practice considering their technological availability and economic practicability and achievability.

To determine technological availability and economic practicability and achievability, Dischargers need to consider what control measures are considered “best” for their industry, and then select and design control measures for their site that are viable in terms of cost and technology. The State Water Board believes that for many facilities minimization of pollutants in storm water discharges can be achieved without using highly engineered, complex treatment systems. The BMPs included in

4 Because toxic and nonconventional pollutants are controlled in the first step by BPT and in the second step by BAT, and the second level of control is “increasingly stringent” (EPA v. National Crushed Stone, 449 U.S. 64, 69 (1980), for simplicity of discussion, the rest of this discussion will focus on BAT. Similarly, because the BAT levels of control in this General Permit are expressed as BMPs and pollution prevention measures, they will also control conventional pollutants. Therefore this discussion will focus on BAT rather than BCT or BPT for conventional pollutants.
this General Permit emphasize effective “low-tech” controls, such as regular cleaning of outdoor areas where industrial activities may take place, proper maintenance of equipment, diversion of storm water around areas where pollutants may be picked up, and effective advanced planning and training (e.g., for spill prevention and response).

E. Receiving Water Limitations and Water Quality Standards

Pursuant to CWA section 301(b)(1)(C) and Water Code section 13377, this General Permit requires compliance with receiving water limitations based on water quality standards. The primary receiving water limitation requires that industrial storm water discharges not cause or contribute to an exceedance of applicable water quality standards. Implementation of the BMPs as required by the technology-based effluent limitation in Section V of this General Permit will typically result in compliance with the receiving water limitations. The discussion of BMPs in this General Permit generally focuses on requiring implementation of BMPs to the extent necessary to achieve compliance with the technology-based effluent limitations, because the technology-based limitations apply similarly to all facilities. In addition, however, this General Permit also makes it clear that, if any individual facility’s storm water discharge causes or contributes to an exceedance of a water quality standard, that Discharger must implement additional BMPs or other control measures that are tailored to that facility in order to attain compliance with the receiving water limitation. A Discharger that is notified by a Regional Water Board or who determines the discharge is causing or contributing to an exceedance of a water quality standard must comply with the Water Quality Based Corrective Actions found in Section XX.B of this General Permit.

Water Quality Based Corrective Actions are different from the Level 1 and Level 2 ERAs that result from effluent-based monitoring. It is possible for a Discharger to be engaged in Level 1 or Level 2 ERAs for one or more pollutants and simultaneously be required to perform Water Quality Based Corrective Actions for one or more other pollutants.

Failure to comply with these additional Water Quality Based Corrective Action requirements is a violation of this General Permit. If additional operational source control measures do not adequately reduce the pollutants, Dischargers must implement additional measures such as the construction of treatment systems and/or overhead coverage. Overhead coverage is any structure or temporary shelter that prevents the vertical contact of precipitation with industrial materials or activities. If the Regional Water Board determines that the Discharger’s selected BMPs are inadequate, the Regional Water Board may require implementation of additional BMPs and/or may take enforcement against Dischargers for failure to comply with this General Permit.

F. Total Maximum Daily Loads (TMDLs)

TMDLs are regulatory tools that provide the maximum amount of a pollutant from potential source in the watershed that a water body can receive while attaining water quality standards. A TMDL is defined as the sum of the allowable loads of a single pollutant from all contributing point sources (the waste load allocations) and non-point sources (load allocations), plus the contribution from background sources. (40 C.F.R. § 130.2, subd. (i).) Discharges covered by this General Permit are considered to be point
source discharges, and therefore must comply with effluent limitations that are “consistent with the assumptions and requirements of any available waste load allocation for the discharge prepared by the State and approved by EPA pursuant to 40 Code of Federal Regulations section 130.7.” (40 C.F.R. § 122.44, subd. (d)(1)(vii).) In addition, Water Code section 13263, subdivision (a), requires that waste discharge requirements implement relevant water quality control plans. Many TMDLs in existing water quality control plans include both waste load allocations and implementation requirements. Attachment E of this General Permit lists the watersheds with U.S. EPA-approved and U.S. EPA-established TMDLs that include TMDL requirements for Dischargers covered by this General Permit.

NPDES-regulated storm water discharges (which include industrial storm water) must be addressed by waste load allocations in TMDLs. (40 C.F.R. § 130.2(h).) NPDES permits must contain effluent limits and conditions consistent with the requirements and assumptions of the waste load allocations in TMDLs. (40 C.F.R. § 122.44(d)(1)(vii)(B).) To date, the relevant waste load allocations assigned to industrial storm water discharges are not directly translatable to effluent limitations. Many of the TMDLs lack sufficient facility specific information, discharge characterization data, implementation requirements, and compliance monitoring requirements. Accordingly, an analysis of each TMDL applicable to industrial storm water discharges must be performed to determine if it is appropriate to translate the waste load allocation into a numeric effluent limit, or if the effluent limit is to be expressed narratively using a BMP approach. U.S. EPA recognizes that because storm water discharges are highly variable in frequency and duration and are not easily characterized, it is often not feasible or appropriate to establish numeric limits. Variability and the lack of data available make it difficult to determine with precision or certainty actual and projected loadings for individual Dischargers or groups of Dischargers.

Regardless of whether the effluent limit is to be numeric or narrative, the existing waste load allocations must be carefully analyzed, and in many cases translated, to determine the appropriate effluent limitations. Issues of interpretation exist with all of the waste load allocations applicable to Dischargers, and these issues vary based on the TMDL. Below is an example of one of the simpler issues:

FIGURE 1: Example Waste Load Allocations Proposed Translation: Ballona Creek Estuary – Toxic Pollutants

<table>
<thead>
<tr>
<th>Metals per Acre Waste Load Allocations for Individual General Construction or Industrial Storm Water Permittees (grams/year/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
</tr>
<tr>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metals per Acre Waste Load Allocations for Individual General Construction or Industrial Storm Water Permittees (milligrams/year/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlordane</td>
</tr>
<tr>
<td>0.04</td>
</tr>
</tbody>
</table>
In order for the above waste load allocations to effectively be implemented as effluent limits under the General Permit, the Water Boards must (1) identify which discharges the waste load allocations apply to, (2) identify the acreages of the individual facilities, (3) convert the waste load allocations from grams/year/acre (or milligrams/year/acre) to grams/year (or milligrams/year) based on the acreage at each identified facility, (4) assign the effluent limits to the identified Dischargers, (5) determine appropriate monitoring to assess compliance with the effluent limits, and (6) develop a tracking mechanism for each identified facility and their individual effluent limits. A similar stepwise process is necessary for each TMDL with waste load allocations assigned to industrial storm water discharges. For TMDLs where effluent limits will be expressed as BMPs, analysis must be performed to determine the appropriate BMPs and the corresponding effectiveness to comply with the assigned waste load allocations.

Some waste load allocations are already expressed as concentration based numbers. It may appear simple to incorporate these values into this General Permit as effluent limits, but the questions still remain regarding how to determine compliance. The monitoring requirements in this General Permit are not designed to measure compliance with a numeric effluent limit or to measure the effect of a discharge on a receiving water body. (See the discussion on monitoring requirements in Fact Sheet Section II.J.) This General Permit requires sampling of four (4) storm events a year, with certain limitations as to when a discharge may be sampled. This method of monitoring may not appropriately serve as TMDL compliance sampling since grab samples are only representative of the particular moment in time when the sample was taken. Since storm water is highly variable, four grab samples per year may not provide sufficient confidence that the effluent limit is being met. An alternative monitoring scheme may be necessary to determine the facility’s impact on the receiving water and to determine compliance with any assigned effluent limits. Questions concerning whether sampling results should be grab samples, composite samples, flow-weighted averaged over all drainage areas, etc. cannot be determined for each concentration-based TMDL without a more thorough analysis.

Additionally, monitoring and assessment requirements must be developed for all of the TMDLs to determine compliance with or progress towards meeting TMDL requirements. The proposed monitoring requirements in this General Permit are not designed to assess pollutant loading or determine compliance with TMDL-specific effluent limits.

Due to the large number and variety of discharges subject to a wide range of TMDLs statewide, to prevent a severe delay in the adoption of this General Permit, TMDL-specific permit requirements for the TMDLs listed in Attachment E will be proposed by the Regional Water Boards. Since the waste load allocations and/or implementation requirements apply to multiple discharges in the region(s) the TMDL were developed, the development of TMDL-specific permit requirements is best coordinated at the Regional Water Board level. The development of TMDL-specific permit requirements is subject to notice and a public comment period prior to incorporation into this General Permit.
Regional Water Board staff, with the assistance of State Water Board staff, will develop and submit the proposed TMDL-specific permit requirements for each of the TMDLs listed in Attachment E by July 1, 2016. After conducting a 30-day public comment period, the Regional Water Boards will propose TMDL-specific permit requirements to the State Water Board for adoption into this General Permit. The Regional Water Boards may also include TMDL-specific monitoring requirements for inclusion in this General Permit, or may issue Regional Water Board orders pursuant to Water Code section 13383 requiring TMDL-specific monitoring. The Regional Water Boards or their Executive Officers may complete these tasks, and the proposed TMDL-specific permit requirements shall have no force or effect until adopted, with or without modification, by the State Water Board. Unless directed to do so by the Regional Water Board, Dischargers are not required to take any additional actions to comply with the TMDLs listed in Attachment E until the State Water Board reopens this General Permit and includes TMDL-specific permit requirements. This approach is consistent with the 2008 MSGP. TMDL-specific permit requirements are not limited by the BAT/BCT technology-based standards.

The Regional Water Boards will submit to the State Water Board the following information for each of the TMDLs listed in Attachment E:

- Proposed TMDL-specific permit requirements, including any applicable effluent limitations, implementation timelines, additional monitoring requirements, reporting requirements, an explanation of how an exceedance of an effluent limitation or a violation of the TMDL will be determined, and required deliverables consistent with the TMDL(s);
- An explanation of how the proposed TMDL-specific permit requirements, timelines, and deliverables are consistent with the assumptions and requirements of applicable waste load allocation(s) to implement the TMDL(s);
- Where a BMP-based approach is proposed, an explanation of how the proposed BMPs will be sufficient to implement applicable waste load allocations; and
- Where concentration-based monitoring is required, an explanation of how the required monitoring, reporting and calculation methodology for an exceedance of an effluent limitation or a violation of the TMDL(s) will be sufficient to demonstrate compliance with the TMDL(s).

Upon receipt of the information described above, the State Water Board will conduct a public comment period and reopen this General Permit to populate Attachment E, the Fact Sheet, and other provisions as necessary in order to incorporate these TMDL-specific permit requirements into this General Permit. Attachment E may also be reopened during the term of this General Permit to add additional TMDLs and corresponding implementation requirements.

This General Permit (Section X.G.2.a.ix) requires a Discharger to identify any additional industrial parameters that may be discharged to a waterbody with a 303(d) impairment identified in Appendix 3 as likely to be associated with industrial storm water.

5 Due to the workload associated with the implementation of this General Permit (e.g., training program development, NEC outreach, electronic enrollment and reporting via SMARTS) it is believed that two years in necessary for Staff to complete a comprehensive analysis and stakeholder process for TMDLS applicable to Dischargers under this General Permit.
Dischargers may need to implement additional monitoring for any applicable parameters (Section XI.B.6.e). Appendix 3 of this General Permit includes the water bodies with 303(d) impairments or TMDLs for pollutants that are likely to be associated with industrial storm water in black font, and those that are not likely to be associated with industrial storm water in red font. This determination is based on the pollutant or pollutants that are causing each impairment, and the State Water Board’s general experience regarding the types of pollutants that are typically found in industrial storm water discharges. The list of waterbodies is from the State Water Boards statewide 2010 Integrated CWA Section 303(d) List / Section 305(b) Report.

Some of the water bodies with 303(d) impairments or TMDLs listed in Appendix 3 of this General Permit are not applicable to Dischargers covered under this General Permit. Appendix 3 indicates these water bodies Dischargers are not required to include in their pollutant source assessment (unless directed to do so by the Regional Water Board).

New Dischargers (as defined in Attachment C) applying for NOI coverage under this General Permit that will be discharging to an impaired water body with a 303(d) listed impairment are ineligible for coverage unless the Discharger submits data and/or information, prepared by a QISP, demonstrating that the facility will not cause or contribute to the impairment. Section VII.B of this General Permit describes the three different options New Dischargers have for making this determination. This General Permit requires a QISP to assist the New Discharger with this determination because individuals making this determination will need expertise in industrial storm water pollutant sources, BMPs and a thorough understanding of complying with U.S. EPA’s storm water regulations and this General Permit’s requirements. Not requiring New Dischargers to have a QISP assist in this demonstration would possibly lead to costly retrofits or closure of a new facility that has not demonstrated that the facility will not cause or contribute to the impairment.

G. Discharges Subject to the California Ocean Plan

1. Discharges to Ocean Waters

On October 16, 2012 the State Water Board amended the California Ocean Plan (California Ocean Plan) to require industrial storm water Dischargers with outfalls discharging to ocean waters to comply with the California Ocean Plan’s model monitoring provisions. The amended California Ocean Plan requires industrial storm water dischargers with outfalls discharging to ocean waters to comply with the California Ocean Plan’s model monitoring provisions. These provisions require Dischargers to: (a) monitor runoff for specific parameters at all outfalls from two storm events per year, and collect at least one representative receiving water sample per year, (b) conduct specified toxicity monitoring at certain types of outfalls at a minimum of once per year, and (c) conduct marine sediment monitoring for toxicity under specific circumstances (California Ocean Plan, Appendix III). The California Ocean Plan provides conditions under which some of the above monitoring provisions may be waived by the Water Boards.

This General Permit requires dischargers with outfalls that discharge to ocean waters to comply with the California Ocean Plan’s model monitoring provisions and
any additional monitoring requirements established pursuant to Water Code section 13383. Dischargers who have not developed and implemented a monitoring program in compliance with the California Ocean Plan’s model monitoring provisions by July 1, 2015 or seven (7) days prior to commencing operations, whichever is later, are ineligible to obtain coverage under this General Permit.

2. Areas of Special Biological Significance (ASBS) Exception

The State Water Board adopted the California Ocean Plan (California Ocean Plan) in 1972, and has subsequently amended the Plan. The California Ocean Plan prohibits the discharge of waste to designated ASBS. ASBS are ocean areas designated by the State Water Board as requiring special protection through the maintenance of natural water quality. The California Ocean Plan states that the State Water Board may grant an exception to California Ocean Plan provisions where the State Water Board determines that the exception will not compromise protection of ocean waters for beneficial uses and the public interest will be served.

On March 20, 2012, the State Water Board adopted Resolution 2012-0012 (ASBS Exception), which grants an exception to the California Ocean Plan prohibition on discharges to ASBS for a limited number of industrial storm water Discharger applicants. The ASBS Exception contains “Special Protections” to maintain natural water quality and protect the beneficial uses of the ASBS. In order to legally discharge into an ASBS, these Dischargers must comply with the terms of the ASBS Exception and obtain coverage under this General Permit. This General Permit incorporates the terms of the ASBS Exception and includes the applicable monitoring requirements for all Dischargers discharging to an ASBS under the ASBS Exception.

H. Training Qualifications

This General Permit and the previous permit both require Dischargers to ensure that personnel responsible for permit compliance have an acceptable level of knowledge. Stakeholders have observed that the previous permit did not adequately specify how to comply with various elements of the permit, such as selecting discharge locations representative of the facility storm water discharge and evaluating potential pollutant sources, nor did it provide a clearly outlined Discharger training program. Guidance that is available from outside sources can be complicated to understand or costly to obtain, which can result in many Dischargers developing and implementing deficient SWPPPs and conducting inadequate monitoring activities. Some Dischargers under the previous permit had the resources to hire professional environmental staff or environmental consultants to assist in compliance. Even in those cases, however, there was little certainty that Dischargers received training regarding implementation of the various BMPs being implemented and required monitoring activities under the previous permit. Through this General Permit, the State Water Board seeks to improve compliance and monitoring data quality, and expand each Discharger’s understanding of this General Permit’s requirements.

This General Permit establishes the Qualified Industrial Storm Water Practitioner (QISP) role. A QISP is someone who has completed a State Water Board sponsored or
approved QISP training course and has registered in SMARTS. A QISP is required to implement certain General Permit requirements at the facility once it has entered Level 1 status in the ERA process as described in Section XII of this General Permit. In some instances it may be advisable for a facility employee to take the training, or for a facility to hire a QISP prior to entering Level 1 status as the training will contain information on the new permit requirements and how to perform certain tasks such as selecting discharge locations representative of the facility storm water discharge, evaluating potential pollutant sources, and identifying inadequate SWPPP elements.

Some industry stakeholders have claimed that their staff is already adequately trained. These employees may continue to perform the basic permit functions (e.g. prepare SWPPPs, perform monitoring requirements, and prepare Annual Reports) without receiving any additional training if the facility’s sampling and analysis results do not exceed the NALs. This requirement is structured in a manner to reduce the costs of compliance for facilities that may not negatively impact receiving water quality.

California licensed professional civil, industrial, chemical, and mechanical engineers and geologists have licenses that have professional overlap with the topics of this General Permit. The California Department of Consumer Affairs, Board for Professional Engineers, Land Surveyors and Geologists (CBPELSG) provides the licensure and regulation of professional civil, industrial, chemical, and mechanical engineers and professional geologists in California. The State Water Board is developing a specialized self-guided State Water Board-sponsored registration and training program specifically for these CBPELSG licensed engineers and geologists in good standing with CBPELSG. The CBPELSG has staff and resources dedicated to investigate and take appropriate enforcement actions in instances where a licensed professional engineer or geologist is alleged to be noncompliant with CBPELSG’s laws and regulations. Actions that result in noncompliance with this General Permit may constitute a potential violation of the CBPELSG requirements and may subject a licensee to investigation by the CBPELSG.

A QISP may represent one or more facilities but must be able to perform the functions required by this General Permit at all times. It is advisable that this individual be limited to a specific geographic region due to the difficulty of performing the needed tasks before, during, and after qualifying storm events may be difficult or impossible if extensive travel is required. Dischargers are required to ensure that the designated QISP has completed the appropriate QISP training course.

This General Permit contains a mechanism that allows for the Water Boards’ Executive Director or Executive Officer to rescind the registration of any QISPs who are found to be inadequately performing their duties as a QISP will no longer be able to do so. A QISP may ask the State Water Board to review any decision to revoke his or her QISP registration. Table 1 of this Fact Sheet below describes the different roles that the QISP and California licensed professional engineers have in this General Permit.

TABLE 1: Role-Specific Permit Requirements
I. Storm Water Pollution Prevention Plan (SWPPP)

1. General

This General Permit requires that all Dischargers develop, implement, and retain onsite a site-specific SWPPP. The SWPPP requirements generally follow U.S. EPA’s five-phase approach to developing SWPPPs, which has been adapted to reflect the requirements of this General Permit in Figure 2 of this Fact Sheet. This approach provides the flexibility necessary to establish appropriate BMPs for different industrial activities and pollutant sources. This General Permit requires a Discharger to include in its SWPPP (Section X of this General Permit) a site map, authorized NSWDs at the facility, and an identification and assessment of potential pollutants sources resulting from exposure of industrial activities to storm water.

This General Permit requires that Dischargers clearly describe the BMPs that are being implemented in the SWPPP. In addition to providing descriptions, Dischargers must also describe who is responsible for the BMPs, where the BMPs will be installed, how often and when the BMPs will be implemented, and identify any pollutants of concern. Table 2 of this Fact Sheet provides an example of how a Discharger could assess potential pollution sources and provide a corresponding BMPs summary.

This General Permit requires that Dischargers select an appropriate facility inspection frequency beyond the required monthly inspections if necessary, and to determine if SWPPP revisions are necessary to address any physical or operational changes at the facility or make changes to the existing BMPs (Section X.H.4.a.vii and Section XI.A.4 of this General Permit). Facilities that are subject to multi-phased physical expansion or significant seasonal operational changes may require more frequent SWPPP updates and facility inspections. Facilities with very stable operations may require fewer SWPPP updates and facility inspections.

Failure to develop or implement an adequate SWPPP, or update or revise an existing SWPPP as required, is a violation of this General Permit. Failure to maintain the SWPPP on-site and have it available for inspection is also a violation of this General Permit.
Dischargers are also required to submit their SWPPPs and any SWPPP revisions via SMARTS; accordingly, BMP revisions made in response to observed compliance problems will be included in the revised SWPPP electronically submitted via SMARTS. Not all SWPPP revisions are significant and it is up to the Dischargers to distinguish between revisions that are significant and those that are not significant. If no changes are made at all to the SWPPP, the Discharger is not required to resubmit the SWPPP on any specific frequency.

- **Significant SWPPP Revisions:** Dischargers are required to certify and submit via SMARTS their SWPPP within 30 days of the significant revision(s). While it is not easy to draw a line generally between revisions that are significant and those that are not significant, Dischargers are not required to certify and submit via SMARTS any SWPPP revisions that are comprised of only typographical fixes or minor clarifications.

- **All Other SWPPP Revisions:** Dischargers are required to submit revisions to the SWPPP that are determined to not be significant every three (3) months in the reporting year.
FIGURE 2: Five Phases for Developing and Implementing an Industrial Storm Water Pollution Prevention Plan (SWPPP)

PLANNING AND ORGANIZATION
* Form Pollution Prevention Team
* Review other facility plans

ASSESSMENT
* Develop a site map
* Identify potential pollutant sources
* Inventory of materials and chemicals
* List significant spills and leaks
* Identify Non-Storm Water Discharges
* Assess pollutant risk

Best Management Practice (BMP) IDENTIFICATION
* Identify minimum required BMPs
* Identify any advanced BMPs

IMPLEMENTATION
* Train employees for the Pollution Prevention Team
* Implement BMPs
* Collect and review records

EVALUATION / MONITORING
* Conduct annual facility evaluation (Annual Evaluation)
* Review monitoring information
* Evaluate BMPs
* Review and revise SWPPP
TABLE 2: Example - Assessment of Potential Industrial Pollution Sources and Corresponding BMPs Summary

<table>
<thead>
<tr>
<th>Area</th>
<th>Activity</th>
<th>Pollutant Source</th>
<th>Industrial Pollutant</th>
<th>BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle and Equipment</td>
<td>Fueling</td>
<td>Spills and leaks</td>
<td>Fuel oil</td>
<td>-Use spill and overflow protection</td>
</tr>
<tr>
<td>Fueling</td>
<td></td>
<td>during delivery</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spills caused by</td>
<td>Fuel oil</td>
<td>-Train employees on proper fueling, cleanup, and spill response techniques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>topping off fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tanks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hosing or washing</td>
<td>Fuel oil</td>
<td>-Use dry cleanup methods rather than hosing down area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>down fuel area</td>
<td></td>
<td>-Implement proper spill prevention control program</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaking storage tanks</td>
<td></td>
<td></td>
<td>Fuel oil</td>
<td>-Inspect fueling areas regularly to detect problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainfall running off</td>
<td></td>
<td></td>
<td>Fuel oil</td>
<td>-Minimize run-on of storm water into the fueling area, cover fueling area</td>
</tr>
<tr>
<td>fueling area, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rainfall running onto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and off fueling area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Minimum and Advanced BMPs

Section V of this General Permit requires the Discharger to comply with technology-based effluent limitations (TBELs). In this General Permit, TBELs rely on implementation of BMPs for Dischargers to reduce and prevent pollutants in their discharge. The BMP effluent limitations have been integrated into the Section X.H of this General Permit and are divided into two categories – minimum BMPs which are generally non-structural BMPs that all Dischargers must implement to the extent feasible, and advanced BMPs which are generally structural BMPs that must be implemented if the minimum BMPs are inadequate to achieve compliance with the TBELs. Section X of this General Permit includes both substantive control requirements in the form of the BMPs listed in Section X.H, as well as various reporting and recordkeeping requirements. The requirement to implement BMPs “to the extent feasible” allows Dischargers flexibility when implementing BMPs, by not requiring the implementation of BMPs that are not technologically available and economically practicable and achievable in light of best industry practices.
The 2008 MSGP requires Dischargers to comply with 12 non-numeric technology-based effluent limits in Section 2.1.2 of the permit through the implementation of “control measures.” This requirement is an expansion of the general considerations outlined in the MSGP adopted in 2000. The control measures specified by the U.S. EPA in the 2008 MSGP are as follows (in order as listed in the 2008 MSGP):

1. Minimize Exposure
2. Good Housekeeping
3. Maintenance
4. Spill Prevention and Response Procedures
5. Erosion and Sediment Controls
6. Management of Runoff
7. Salt Storage Piles or Piles Containing Salt
8. Sector Specific Non-Numeric Effluent Limits
9. Employee Training
10. Non-Storm Water Discharges (NSWDs)
11. Waste, Garbage and Floatable Debris
12. Dust Generation and Vehicle Tracking of Industrial Materials

This General Permit addresses eleven of the above twelve control measures from the 2008 MSGP Section 2.1.2 Non-Numeric Technology-Based Effluent Limits (BPT/BAT/BCT). Eleven of the control measures are addressed as minimum BMPs that the State Water Board has determined to be most applicable to California’s Dischargers. Two of those eleven control measures (1- Minimize Exposure, 6 – Management of Runoff) are also identified as advanced BMPs (Section X.H.2 of this General Permit). This General Permit is not a sector-specific permit and therefore does not contain limitations to address control measure number 8 (Sector Specific Non-Numeric Effluent Limits).

The non-structural elements of the control measure to minimize exposure are addressed in the minimum BMP Section X.H.1 of this General Permit while structural control elements are addressed in the advanced BMP Section X.H.2 of this General Permit. The on-site diversion elements of the control measure to minimize exposure are addressed as minimum BMPs.

The runoff reduction elements of the control measure to minimize exposure are included as advanced BMPs. Advanced BMPs that are required to be implemented when a Discharger has implemented the minimum BMPs to the extent feasible and they are not adequate to comply with the TBELs. The advanced BMP categories are: (1) exposure minimization BMPs, (2) storm water containment and discharge reduction BMPs, (3) treatment control BMPs, and (4) additional advanced BMPs needed to meet the effluent limitations of this General Permit. Advanced BMPs are generally structural control measures and can include any BMPs that exceed the minimum BMPs. The control measure for Non-Storm Water Discharges (NSWDs) is addressed in both the discharge prohibitions (Section III) and authorized non-storm water discharges (Section IV) of this General Permit and essentially represents a minimum BMP.
This General Permit encourages Dischargers to utilize BMPs that infiltrate or reuse storm water where feasible. The State Water Board expects that these types of BMPs will not be appropriate for all industrial facilities, but recognizes the many possible benefits (e.g. increased aquifer recharge, reduces flooding, improvements to water quality) associated with the infiltration and reuse of storm water. Encouraging the use of storm water infiltration and reuse BMPs is consistent with the statewide approach to managing storm water with lower impact methods.

The BMPs in this General Permit that coincide with the control measures in the 2008 MSGP are as follows (in order as listed in the 2008 MSGP):

a. Minimization of Exposure to Storm Water

Section 2.1.2.1 of the 2008 MSGP requires Dischargers to minimize the exposure of industrial materials and areas of industrial activity to rain, snow, snowmelt, and runoff. The 2008 MSGP mixes both structural and nonstructural BMPs and specifies particular BMPs to consider when minimizing exposure such as grading/berming areas to minimize runoff, locating materials indoors, spill clean up, contain vehicle fluid leaks or drain fluids before storing vehicles on-site, secondary containment of materials, conduct cleaning activities undercover, indoors or in bermed areas, and drain all wash water to a proper collection system.

This General Permit requires the evaluation of BMPs in the potential pollutant source assessment in the SWPPP (Section X.G.2). When the minimum BMPs are not adequate to comply with the TBELs, Dischargers are required to implement advanced BMPs (Section X.H.2.a). These advanced BMPs may include additional exposure minimization BMPs (Section X.H.2.b.1).

b. Good Housekeeping

Section 2.1.2.2 of the 2008 MSGP requires that Dischargers keep all exposed areas that may be a potential source of pollutants clean and orderly. This General Permit (Section X.H.1.a) seeks to define “clean and orderly” by specifying a required set of nine (9) minimum good housekeeping BMPs, which include: observations of outdoor/exposed areas, BMPs for controlling material tracking, BMPs for dust generated from industrial materials or activities, BMPs for rinse/wash water activities, covering stored industrial materials/waste, containing all stored non-solid industrial materials, preventing discharge of rinse/wash waters/industrial materials, prevent non-industrial area discharges from contact with industrial areas of the facility, and prevent authorized NSWDs from non-industrial areas from contact with industrial areas of the facility.

c. Preventative Maintenance

Section 2.1.2.3 of the 2008 MSGP requires that Dischargers regularly inspect, test, maintain, and repair all industrial equipment to prevent leaks, spills and releases of pollutants that may be exposed to storm water discharged to receiving waters. This General Permit (Section X.H.1.b) incorporates this
concept by requiring four (4) nonstructural BMPs which include: identification and inspection of equipment, observations of potential leaks in identified equipment, an equipment maintenance schedule, and equipment maintenance procedures.

d. Spill and Leak Prevention and Response

Section 2.1.2.4 of the 2008 MSGP requires that Dischargers minimize the potential for leaks, spills and other releases that may be exposed to storm water. Dischargers are also required to develop a spill response plan which includes procedures such as labeling of containers that are susceptible to a spill or a leakage, establishing containment measures for such industrial materials, procedures for stopping leaks/spills, and provisions for notification of the appropriate personnel about any occurrence. This General Permit (Section X.H.1.c) requires implementation of four (4) BMPs to address spills. These BMPs include: developing a set of spill response procedures to minimize spills/leaks, develop procedures to minimize the discharge of industrial materials generated through spill/leaks, identifying/describing the equipment needed and where it will be located at the facility, and identify/training appropriate spill response personnel.

e. Erosion and Sediment Controls

Section 2.1.2.5 of the 2008 MSGP requires the use of structural and/or non-structural control measures to stabilize exposed areas and contain runoff. Also required is the use of a flow velocity dissipation device(s) in outfall channels where necessary to reduce erosion and/or settle out pollutants. This General Permit (Section X.H.1.e) requires the implementation of (5) BMPs to prevent erosion and sediment discharges. The erosion and sediment control BMPs include: implementing effective wind erosion controls, providing for effective stabilization of erodible areas prior to a forecasted storm event, site entrance stabilization/prevent material tracking offsite and implement perimeter controls, diversion of run-on and storm water generated from within the facility away from all erodible materials, and ensuring compliance with the design storm standards in Section X.H.6. U.S. EPA has developed online resources for erosion and sediment controls.6

f. Management of Runoff

Section 2.1.2.6 of the 2008 MSGP requires the diversion, infiltration, reuse, containment, or otherwise reduction of storm water runoff, to minimize pollutants in discharges. This General Permit (Sections X.H.1.a.viii, X.H.1.d.iv., and

X.H.1.e.iv) requires Dischargers to divert run-on from non-industrial sources and manage storm water generated within the facility away from industrial materials and erodible surfaces. Runoff reduction is required as an advanced BMP when minimum BMPs are not adequate to comply with the TBELs. The 2008 MSGP encouraged Dischargers to consult with EPA's internet-based resources relating to runoff management. 7

g. Salt Storage Piles or Piles Containing Salt

Section 2.1.2.7 of the 2008 MSGP requires salt storage piles/piles containing salt that may be discharged to be enclosed or covered and to use BMPs when the salt is being used. This General Permit does not have a minimum BMP specifically for salt storage, however it does require all stockpiled/stored industrial materials be managed in a way to reduce or prevent industrial storm water discharges of the stored/stockpiled pollutants. The good housekeeping (Section X.H.1.a) and material handling and waste management (Section X.H.1.d) minimum BMPs in this General Permit require that all materials readily mobilized by storm water be covered, the minimization of handling of industrial materials or wastes that can be readily mobilized by contact with storm water during a storm event, and the diversion of run-on from stock piled materials.

h. Sector Specific Non-Numeric Effluent Limits

Section 2.1.2.8 of the 2008 MSGP requires Dischargers to achieve any additional non-numeric limits stipulated in the relevant sector-specific section(s) of Part 8 of the 2008 MSGP. This General Permit is not a sector-specific permit and does not contain sector-specific non-numeric effluent limitations like the 2008 MSGP. While this General Permit does not specify sector-specific BMPs, Dischargers are required to select and implement BMPs for their specific facility to reduce or prevent industrial storm water discharges of pollutants to comply with the technology-based effluent limitations. In addition, sectors with applicable ELGs must comply with those ELGs.

i. Employee Training Program

Section 2.1.2.9 of the 2008 MSGP requires all employees engaged in industrial activities or the handling of industrial materials that may affect storm water to obtain training covering implementation of this General Permit. This General Permit (Section X.D.1 and X.H.1.f) requires a facility to establish a Pollution Prevention Team (team members, collectively) responsible for implementing permit requirements such as the SWPPP, monitoring requirements, or BMPs.

U.S. EPA. National Management Measures to Control Nonpoint Source Pollution from Urban Areas (and any similar State or Tribal publications) <www.epa.gov/owow/nps/urbanmm/index.html>, [as of February 4, 2014].
The five (5) minimum training BMPs include: ensuring that all team members are properly trained, preparing the proper training materials and manuals, identifying which individuals needs to be trained, providing a training schedule, and maintaining documentation on the training courses and which individuals received the training.

This General Permit also requires a QISP to be assigned to each facility that reaches Level 1 status. One purpose of a QISP is to have an individual available who can provide compliance assistance with these training requirements. The QISP is responsible for training the appropriate team members. Appropriate team members are any team members involved in implementing this General Permit for drainage areas causing NAL exceedances, and any other team members identified by the QISP that need additional training to implement this General Permit.

j. NSWDs

Section 2.1.2.10 of the 2008 MSGP requires that unauthorized NSWDs are eliminated (Part 1.2.3 of the 2008 MSGP lists the NSWDs authorized by the 2008 MSGP). The good housekeeping minimum BMP (Section X.H.1.a.ix of this General Permit) requires that contact between authorized NSWDs and industrial areas of the facility be minimized. This General Permit (Section IV) also includes separate requirements for authorized NSWDs and (Section III) prohibits unauthorized NSWDs.

k. Material Handling and Waste Management

Section 2.1.2.11 of the 2008 MSGP requires that Dischargers ensure waste, garbage, and floatable debris are not discharged into receiving waters. The 2008 MSGP identifies keeping areas clean and intercepting such materials as ways to minimize such discharges. This General Permit (Section X.H.1.d) requires Dischargers to implement six (6) general BMPs that address material handling and waste management. These BMPs include: preventing or minimizing handling of waste or materials during a storm event that could potentially result in a discharge, containing industrial materials susceptible to being dispersed by the wind, covering industrial waste disposal containers when not in use to contain industrial materials, diversion of run-on and storm water generated from within the facility away from all stock piled materials, cleaning and managing spills of such wastes or materials (in accordance with Section X.H.1.e of this General Permit), and conducting observations of outdoor areas and equipment that may come into contact with such materials or waste and become contaminated.

l. Waste, Garbage and Floatable Debris

Section 2.1.2.11 of the 2008 MSGP requires that waste, garbage, and floatable debris are not discharged to receiving waters by keeping exposed areas free of such materials or by intercepting them before they are discharged. Material handling and waste management BMPs are included in Section X.H.1.d of this General Permit. Dischargers are required to: prevent handling of waste materials during a storm event that could result in a discharge, contain waste disposal...
containers when not in use, clean and manage spills from waste, and observe outdoor areas and equipment that may come into contact with waste and become contaminated.

m. Dust Generation and Vehicle Tracking of Industrial Materials

Section 2.1.2.12 of the 2008 MSGP requires that generation of dust and off-site tracking of raw, final, or waste materials is minimized. This General Permit does not require minimization of dust generation and vehicle tracking of industrial materials as a minimum BMP directly. Dust generation and vehicle tracking of industrial materials BMPs are included in Section X.H.1.a (“good housekeeping”) of this General Permit where Dischargers must prevent dust generation from industrial materials or activities and contain all stored non-solid industrial materials that can be transported or dispersed via wind or come in contact with storm water, and Section X.H.1.d. (“material handling and waste management”) of this General Permit, which requires Dischargers to contain non-solid industrial materials or wastes that can be dispersed via wind erosion or come into contact with storm water during handling.

n. Quality Assurance and Record Keeping

Section 2.1.2 of the 2008 MSGP does not directly designate record keeping as a control measure. This General Permit (Section X.H.1.g) includes quality assurance and record keeping as a minimum BMP and requires Dischargers to implement three (3) general BMPs. These BMPs include: developing and implementing procedures to ensure that all elements of the SWPPP are implemented, develop a method of tracking and recording the implementation of all BMPs identified in the SWPPP, and a requirement to keep and maintain those records. This ensures that management procedures are designed and permit requirements are implemented by appropriate staff.

o. Implementation of BMPs in the SWPPP

Like the previous permit, this General Permit does not assign Dischargers a schedule to implement BMPs. Instead, this General Permit requires Dischargers to select the appropriate schedule to implement the minimum BMPs. In addition, this General Permit requires Dischargers to identify, as necessary, any BMPs that should be implemented prior to precipitation events. Although Dischargers are required to maintain internal procedures to ensure the BMPs are implemented according to schedule or prior to precipitation events, Dischargers are only required to certify in the Annual Report whether they complied with the BMP implementation requirements.

Dischargers are required to implement an effective suite of BMPs that meet the technology and water-quality based limitations of this General Permit. Based upon Regional Water Board staff inspections, there is significant variation between Dischargers’ interpretations of what BMPs were necessary to comply with the previous permit. This General Permit establishes a new requirement that Dischargers must implement, to the extent feasible, specific minimum BMPs.
to reduce or prevent the presence of pollutants in their industrial storm water discharge. In addition, due to the wide variety of facilities conducting numerous and differing industrial activities throughout the state, this General Permit retains the requirement from the previous permit that Dischargers establish and implement additional BMPs beyond the minimum. Implementation of this General Permit’s minimum BMPs, together with any necessary advanced BMPs, will result in compliance with the effluent limitations of this General Permit (Section V.A). All Dischargers must evaluate their facilities and determine the best practices within their industry considering technological availability and economic practicability and achievability to implement these minimum BMPs and any advanced BMPs.

The State Water Board has selected minimum BMPs that are generally applicable at all facilities. The minimum BMPs are consistent with the types of BMPs normally found in properly developed SWPPPs and, in most cases, should represent a significant portion of the effort required for a Discharger to achieve compliance. Due to the diverse industries covered by this General Permit, the development of a more comprehensive list of minimum BMPs is not currently feasible. The selection, applicability, and effectiveness of a given BMP is often related to industrial activity type and to facility-specific facts and circumstances. Advanced BMPs must be selected and implemented by Dischargers, based on the type of industry and facility-specific conditions, to the extent necessary to comply with the technology-based effluent limitation requirements of this General Permit.

Failure to implement all of the minimum BMPs to the extent feasible is a violation of this General Permit. (Section X.H.1.) Dischargers must justify any determination that it is infeasible to implement a minimum BMP in the SWPPP (Section X.H.4.b). Failure to implement advanced BMPs necessary to achieve compliance with either the technology or water quality standards requirements in this General Permit is a violation of this General Permit.

p. Temporary Suspension of Industrial Activities

The exception for inactive and unstaffed sites in section 6.2.1.3 of the 2008 MSGP does not require a Discharger with a facility that is inactive and unstaffed with no industrial materials or activities exposed to storm water (in accordance with the substantive requirements in 40 Code of Federal Regulations section 122.26(g)) to complete benchmark monitoring. The Discharger is required to sign and certify a statement in the SWPPP verifying that the site is inactive and unstaffed. If circumstances change and industrial materials or activities become exposed to storm water or the facility becomes active and/or staffed, this exception no longer applies and the Discharger is required to begin complying immediately with the applicable benchmark monitoring requirements under part 6.2 of the 2008 MSGP.

This General Permit allows Dischargers to temporarily suspend monitoring at facilities where industrial activities have been suspended in accordance with Section X.H.3. This is only intended for Dischargers with facilities where it is
infeasible to comply with this General Permit’s monitoring while activities are suspended (e.g. remote, unstaffed, or inaccessible facilities during the time of such a suspension). Dischargers are required to update the facility’s SWPPP with the BMPs being used to stabilize the site and submit the suspension dates and a justification for the suspension of monitoring via SMARTS.

3. Design Storm Standards for Treatment Control BMPs

It is the State Water Board’s intent to minimize the regulatory uncertainty and costs concerning treatment control BMPs in order to encourage the implementation of treatment control BMPs when appropriate. Section X.H.6 of this General Permit specifies a design storm standard for use when treatment controls BMPs are installed. There is both a volume-based and flow-based design storm standard in this General Permit. Both are based on the 85th percentile 24-hour storm event. Without a design storm standard, Dischargers have installed treatment controls using a wide variety of designs that were sometimes either unnecessarily stringent/expensive, or deficient in complying with the requirements of the relevant permit. Some Dischargers have been hesitant to consider treatment options because of the uncertainty concerning acceptable treatment design. The design storm standards are generally expected to:

- Be consistent with the effluent limitations of this General Permit;
- Be protective of water quality;
- Be achievable for most pollutants and their associated treatment technologies; and,
- Reduce the costs associated with treating industrial storm water discharges beyond the levels necessary to achieve compliance with this General Permit.

In lieu of complying with the design storm standards for treatment control BMPs, Dischargers may certify and submit a Level 2 ERA Technical Report, including an Industrial Activity BMPs Demonstration (Section XII.D.2.a of this General Permit). The Level 2 ERA Technical Report requirement is based upon NAL exceedances. Under this option, a Discharger with Level 2 status must either implement BMPs to eliminate future NAL exceedances, or justify what BMPs must be implemented to comply with this General Permit even if the BMPs will not eliminate future exceedances of NALs. Dischargers who implement treatment control BMPs that vary from the design storm standards in Section X.H.6 must include an analysis showing that their treatment control BMPs comply with this General Permit’s effluent limitations in the Industrial Activity BMP Demonstration.

This General Permit does not require Dischargers to retrofit existing treatment controls that do not meet the design storm standard, unless the Discharger determines that the existing treatment controls are not adequate to comply with this General Permit. In addition, once TMDL-specific implementation requirements are added to this General Permit, those Dischargers subject to TMDLs may need to add
new or retrofitted treatment control BMPs to meet the TMDL implementation requirements.

To arrive at these design storm standards, the State Water Board has relied heavily on previous Water Board decisions concerning treatment efficacy for municipalities, published documents, stakeholder comments, and reasonableness. In 2000, the State Water Board issued State Water Board Order WQ 2000-11, which upheld Los Angeles Regional Water Board's permit requirements which mandated that all new development and redevelopment exceeding certain size criteria design treatment BMPs based on a specific storm volume: the 85th percentile 24-hour storm event. This design storm standard was based on research demonstrating that the standard represents the maximized treatment volume cut-off at the point of diminishing returns for rainfall/runoff frequency. On the basis of this equation, the maximized runoff volume for 85 percent treatment of annual runoff volumes in California can range from 0.08 to 0.86 inch depending on the imperviousness of the watershed area and the mean amount of rainfall. This design storm standard is referred to as the Standard Urban Storm Water Mitigation Plan’s volumetric criterion and there are multiple acceptable methods of calculating this volume. For more information, see the California Stormwater Best Management Practices Handbook.

The San Diego Regional Water Board first established both volumetric and flow-based design storm criteria for NPDES MS4 permits. It is generally accepted by civil engineers doing hydrology work to use twice the peak hourly flow of a specific storm event to use as the basis for flow-based design of BMPs. This General Permit therefore establishes the flow-based design storm standard to be twice the peak hourly flow of the 85th percentile 24-hour storm event.

The primary objective of specifying a design storm standard is to properly size BMPs to, at a minimum, effectively treat the first flush of run-off from all storm events. The economic impacts of treating all storm water from a facility versus the minimal environmental benefit of complete treatment justify the design storm approach. It is unrealistic to require each facility to do a cost benefit analysis of their treatment structures. To simplify the requirements for design, the State Water Board reviewed research from the City of Portland and the City of San Jose to determine the volume of each rain event compared to the amount of events that occur for that volume. The results of their findings show an inflection point that is typically found at approximately the 80 to 85 percentile of recorded storm events.

Dischargers should be aware of the potential unintended public health concerns associated with treatment control BMPs. Extensive monitoring studies conducted by the California Department of Public Health (CDPH) have documented that mosquitoes opportunistically breed in structural BMPs, particularly those that hold standing water for over 96 hours. BMPs that produce mosquitoes create potential public health concerns and increase the burden on local vector control agencies that are mandated to inspect for and abate mosquitoes and other vectors within their jurisdictional boundaries. These unintended consequences can be lessened when BMPs incorporate design, construction, and maintenance principles developed specifically to minimize standing water available to mosquitoes while having negligible effects on the capacity of the structures to provide water quality improvements. The California Health and Safety Code prohibits landowners from knowingly providing habitat for or allowing the production of mosquitoes and other vectors, and gives local vector control agencies broad inspection and abatement powers.

4. Monitoring Implementation Plan

Dischargers are required to prepare and implement a Monitoring Implementation Plan (Section X.I of this General Permit). The Monitoring Implementation Plan requirements are designed to assist the Discharger in developing a comprehensive plan for the monitoring requirements in this General Permit and to assess their monitoring program. The Monitoring Implementation Plan includes a description of visual observation procedures and locations, as well as sampling procedures, locations, and methods. The Monitoring Implementation Plan shall be included in the SWPPP.

J. Monitoring and Reporting Requirements

This General Permit requires Dischargers to develop and implement a facility-specific monitoring program. Monitoring is defined as visual observations, sampling and analysis. The monitoring data will be used to determine:

13 California Health & Safety Code, Division 3, Section 2060 and following.
a. Whether BMPs addressing pollutants in industrial storm water discharges and authorized NSWDs are effective for compliance with the effluent and receiving water limitations of this General Permit,

b. The presence of pollutants in industrial storm water discharges and authorized NSWDs (and their sources) that may trigger the implementation of additional BMPs and/or SWPPP revisions; and,

c. The effectiveness of BMPs in reducing or preventing pollutants in industrial storm water discharges and authorized NSWDs.

Effluent sampling and analysis information may be useful to Dischargers when evaluating the need for improved BMPs. The monitoring requirements in this General Permit recognize the 2008 MSGP approach to visual observations as an effective monitoring method for evaluating the effectiveness of BMPs at most facilities. Section 6.2 of the 2008 MSGP limits its monitoring sampling requirements to certain industrial categories. Similar to the previous permit, this General Permit requires all Dischargers to sample unless they have obtained NEC coverage or have an inactive mining operation(s) certified as allowed under this General Permit Section XIII.

This General Permit defines a Qualifying Storm Event (QSE) to provide clarity to Dischargers of when sampling is required. The previous permit (Section B.5.a) specified that sampling was required within the first hour of discharge, however, this General Permit requires Dischargers to sample within four hours of the start of Discharge. Many Dischargers were not able to get samples of their discharge locations within one (1) hour under the previous permit so this general permit has expanded the timeframe allowed to provide enough time to sample all discharge locations. The previous permit required three working dry days before sampling and this General Permit defines this period as 48 hours, this timeframe was decreased to provide more opportunities for Dischargers to obtain samples. This General Permit does not specify a volume for sampling due to the complexity of using rain gauges and the limited access of rain gauge station data.

Dischargers are only required to obtain samples required during scheduled facility operating hours and when sampling conditions are safe in accordance with Section XI.C.6.a.ii of this General Permit. If a storm event occurs during unscheduled facility operating hours (e.g. during the weekend or night) and during the 12 hours preceding the scheduled facility operating hours, the Dischargers is still responsible for obtaining samples at discharge locations that are still producing a discharge at the start of facility operations. Under the previous permit, many Dischargers were unable to obtain samples due to rainfall beginning at night.

The State Water Board recognizes that it may not be feasible for all facilities to obtain four QSEs in a reporting year because there may not be enough qualifying storm events to do so. Therefore, a Discharger that is unable to collect and analyze storm water samples from two QSEs in each half of a reporting year due to a lack of QSEs is not in violation of Section XI.B.2. Dischargers that miss four QSEs during
a reporting year due to the fact that four QSEs did not occur are not required to make up these sampling events in subsequent reporting years.

The State Water Board recognizes that each facility has unique physical characteristics, industrial activities, and/or variations in BMP implementation and performance which warrants the requirement that each facility demonstrate its compliance. Figure 3 of this Fact Sheet provides a summary of all the monitoring-related requirements of this General Permit. This General Permit’s monitoring requirements include sampling and analysis requirements for specific indicator parameters that indicate the presence of pollutants in industrial storm water discharges. The “indicator parameters” are oil and grease (for petroleum hydrocarbons), total suspended solids (for sediment and sediment bound pollutants) and pH (for acidic and alkaline pollutants). Additionally, Dischargers are required to evaluate their facilities and analyze samples for additional facility-specific parameters. These monitoring program requirements are designed to provide useful, cost-effective, timely, and easily obtained information to assist Dischargers as they identify their facility’s pollutant sources and implement corrective actions and revise BMPs as necessary (Section XI.A.4 of this General Permit).

This General Permit requires a combination of visual observations and analytical monitoring. Visual observations provide Dischargers with immediate information indicating the presence of many pollutants and their sources. Dischargers must implement timely actions and revise BMPs as necessary (Section XI.A.4) when the visual observations indicate pollutant sources have not been adequately addressed in the SWPPP. Analytical monitoring provides an additional indication of the presence and concentrations of pollutants in storm water discharge. Dischargers are required to evaluate potential pollutant sources and corresponding BMPs and revise the SWPPP appropriately when specific types of NAL exceedances occur as described below.
2. Visual Observations

There are two major changes to the visual observation requirements in this General Permit compared to the previous permit, which include:

a. Monthly Visual Observations

The previous permit required separate quarterly visual observations for unauthorized and authorized non-storm water discharges. It did not require periodic visual observations of the facility to determine whether all potential pollutant sources were being adequately controlled with BMPs. Prior drafts of this General Permit proposed the addition of pre-storm inspections. This was met with great resistance by Dischargers because of the complexity and burden of determining when a QSE would occur. Many of these Dischargers recommended that monthly BMP and non-storm water discharge visual observations should replace the proposed pre-storm inspections. This General Permit merges all visual observations into a single monthly visual observation.

b. Sampling Event Visual Observations
The previous permit required monthly storm water visual observations. This required Dischargers to conduct visual observations for QSEs that were not being sampled since only two QSEs were required to be sampled in the previous permit. As discussed below, the sampling requirement has been increased to four QSEs within each reporting year with two QSEs required in each half of the reporting year. We expect that this will result in more samples being collected and analyzed, since most of California experiences, on average, at least two QSEs per half year. This General Permit streamlines the storm water visual observation requirement by linking the visual observations to the time of sampling.

3. Sampling and Analysis

a. General

As part of the process for developing previous drafts of this General Permit, the State Water Board considered comments from numerous stakeholders concerning sampling and analysis. Sampling and analysis issues were the most dominant of all issues raised in the comments.

The State Water Board received stakeholder comments that fall into three primary categories concerning this General Permit’s sampling and analysis approach:

i. Comments supporting an intensive water quality sampling and analysis approach (with the goal of producing more accurate discharge-characterizing and pollutant concentration data) as the primary method of determining compliance with effluent limitations and receiving water limitations. Since this approach requires large amounts of high quality data to accurately quantify the characteristics of the discharges, it is referred to as the quantitative monitoring approach. Stakeholders supporting the quantitative approach generally also support the use of stringent NELs to evaluate compliance with this General Permit;

ii. Comments supporting only visual observations as the primary method of determining compliance: These stakeholders generally assert that storm water sampling is an incomplete and not very cost effective means of determining water quality impacts on the receiving waters; and,

iii. Comments supporting a combination of visual observations and cost-effective water quality sampling and analysis approach (sampling and analysis that would produce data indicating the presence of pollutants) to determine compliance (similar to the previous permit's approach). Since this approach uses more qualitative information to describe the quality and characteristics of the discharges, it is referred to as the qualitative monitoring approach.

Within each of the three categories, there are various recommendations and rationales as to the exact monitoring frequencies, procedures and methods, required to implement the approach. Stakeholders in favor of the quantitative monitoring approach commented that it is the only reliable and meaningful
method of assuring that: (1) BMPs are effective in reducing or preventing pollutants in storm water discharge in compliance with BAT/BCT, and (2) the discharge is not causing or contributing to an exceedance of a water quality standards. The stakeholders state that visual observations are not effective in measuring pollutant concentrations nor is it effective in determining the presence of colorless and/or odorless pollutants. The stakeholders state that qualitative monitoring (and the use of indicator parameters) will not provide results useful for calculating pollutant loading nor will it accurately characterize the discharge.

Stakeholders in favor of requiring only visual observations state that sampling and analysis is unnecessary because (1) the previous permit did not include NELs so the usefulness of sampling and analysis data is limited, (2) a significant majority of Dischargers should be able to develop appropriate BMPs without sampling and analysis data, (3) most pollutant sources and pollutants can be detected and mitigated through visual observations, (4) the costs associated with quantitative monitoring are excessive and disproportionate to any benefits, (5) U.S. EPA’s storm water regulations do not require sampling, (6) The 2008 MSGP relies heavily on visual observations and requires only a limited number of specific industries to conduct sampling and analysis, and (7) the majority of Dischargers are small businesses and do not have sufficient training or understanding to perform accurate sampling and analysis.

Stakeholders in favor of requiring both visual observations and a cost-effective qualitative monitoring program state that (1) both are within the means and understanding of most Dischargers, and (2) monitoring results are useful for evaluating a Discharger’s compliance without unnecessarily increasing the burden on the Discharger and without subjecting Dischargers to non-technical enforcement actions.

The State Water Board finds that it is feasible for the majority of Dischargers to develop appropriate BMPs without having to perform large amounts of quantitative monitoring, which can be very costly. In the absence of implementing NELs, the State Water Board has determined that the infeasibility and costs associated with developing quantitative monitoring programs at each of thousands industrial facilities currently permitted would outweigh the limited benefits. The primary difficulty associated with requiring intensive quantitative monitoring lies with the cost and the difficulty of accurately sampling industrial storm water discharges.

Stakeholders that support quantitative monitoring believe the data is necessary to determine pollutant loading, concentration, or contribution to water quality violations. In order to derive data necessary to support those goals, however, the data must be of high quality, meaning it must be accurate, precise and have an intact chain of custody. Many industrial facilities do not have well-defined storm water conveyance systems for sample collection. Storm water frequently discharges from multiple locations through sheet flow into nearby streets and adjoining properties. Sample collection from a portion of the sheet flow is an inexact measurement since not all of the flow is sampled. Requiring every Discharger to construct well-defined storm water conveyances may cost
anywhere from thousands to hundreds of thousands of dollars per facility depending on the size and nature of each industrial facility. At many facilities, the construction of such conveyances may also violate local building codes, create safety hazards, cause flooding, or increase erosion. In addition, eliminating sheet flow at some facilities could result in increased pollutant concentrations.

The State Water Board has considered the complexity and costs associated with quantitative monitoring. Unlike continuous point source discharges (e.g., publicly owned treatment works), storm water discharges are variable in intensity and duration. The concentration of pollutants discharged at any one time is dependent on many complex variables. The largest concentration of pollutants would be expected to discharge earlier in the storm event and taper off as discharges continue. Therefore, effective quantitative monitoring of storm water discharges would require that storm water discharges be collected and sampled until most or all of the pollutants have been discharged. Multiple samples would need to be collected over many hours. To determine the pollutant mass loading, the storm water discharge flow must also be measured each time a sample is collected.

For a quantitative monitoring approach to yield useful pollutant loading information, the installation of automatic sampling devices and flow meters at each discharge location would usually be necessary. In addition, qualified individuals would be needed to conduct the monitoring procedures, and to handle and maintain flow meters and automatic samplers are needed. A significant majority of storm water Dischargers under this General Permit do not possess the skills to manage such an effort. Dischargers will bear the cost of employing and/or training on-site staff to do this work, or the cost of contracting with environmental consultants and acquiring the required flow meters and automatic samplers. The cost to Dischargers to conduct quantitative monitoring varies depending on the number of outfalls, the number of storms, the length of each storm, the amount of staff training, and other variables.

To address these concerns, this General Permit includes a number of new items that bridge the gap between the previous permit’s qualitative monitoring and the quantitative approach recommended by many commenters. This General Permit includes a requirement for all Dischargers to designate a QISP when they enter Level 1 status due to NAL exceedances. The QISP is required to be trained to: (1) more accurately identify discharge locations representative of the facility storm water discharge (2) select and implement appropriate sampling procedures (3) evaluate and develop additional BMPs to reduce or prevent pollutants in the industrial storm water discharges.

Dischargers that fail to develop and implement an adequate Monitoring Implementation Plan that includes both visual observations and sampling and analysis, are in violation of this General Permit. Dischargers that fail to comply with Level 1 status and Level 2 status ERA requirements, triggered by NAL exceedances, are in violation of this General Permit.
Water Code section 13383.5 requires that the State Water Board include (1) standardized methods for collection of storm water samples, (2) standardized methods for analysis of storm water samples, (3) a requirement that every sample analysis be completed by a State certified laboratory or in the field in accordance with Quality Assurance and Quality Control (QA/QC) protocols, (4) a standardized reporting format, (5) standardized sampling and analysis programs for QA/QC, and (6) minimum detection limits. The monitoring requirements in this General Permit (Section XI), as supplemented by SMARTS, address these requirements.

Under the previous permit, many Dischargers did not develop adequate sample collection and handling procedures, decreasing the quality of analytical results. In addition, Dischargers often selected inappropriate test methods, method detection limits, or reporting units. This General Permit requires all Dischargers to identify discharge locations that are representative of industrial storm water discharges and develop and implement reasonable sampling procedures to ensure that samples are not mishandled or contaminated.

It is infeasible for the State Water Board to provide a single comprehensive set of sample collection and handling procedures/instructions due to the wide variation in storm water conveyance and collection systems in use at facilities around the state. As an alternative, Attachment H of this General Permit provides minimum storm water sample collection and handling instructions that pertain to all facilities. Dischargers are required to develop facility-specific sample collection and handling procedures based upon these minimum requirements. Table 2 in this General Permit provides the minimum test methods that shall be used for a variety of common pollutants. Dischargers must be aware that use of more sensitive test methods (e.g., U.S. EPA Method 1631 for Mercury) may be necessary if they discharge to an impaired water body or are otherwise required to do so by the Regional Water Board. This General Permit allows Dischargers to propose an analytical test method for any parameter or pollutant that does not have an analytical test method specified in Table 2 or in SMARTS. Dischargers may also propose analytical test methods with substantially similar or more stringent method detection limits than existing approved analytical test methods. Upon approval, SMARTS will be updated over time to add additional acceptable analytical test methods.

The previous permit allowed Dischargers to reduce sampling analysis requirements for substantially similar drainage areas by either (1) combining samples for an unspecified maximum number of substantially similar drainage areas, or (2) sampling a reduced number of substantially similar drainage areas. The State Water Board provided this procedure to reduce analytical costs. The complexity associated with determining substantially similar drainage areas has led Dischargers to produce various, and sometimes questionable, analytical schemes. In addition, the previous permit did not establish a maximum number of samples that could be combined.

To standardize sample collection and analysis as required by Water Code section 13383.5, while continuing to offer a reduced analytic cost option, these
requirements have been revised. Section XI.B.4 of this General Permit requires Dischargers to collect samples from all discharge locations regardless of whether the discharges are substantially similar or not. Dischargers may analyze each sample collected, or may analyze a combined sample consisting of equal volumes, collected from as many as four (4) substantially similar discharge locations. A minimum of one combined sample shall be analyzed for every one (1) to four (4) discharge locations, and the samples shall be combined in the lab in accordance with Section XI.C.5 of this General Permit.

Representative sampling is only allowed for sheet flow discharges or discharges from drainage areas with multiple discharge locations. Dischargers shall select the appropriate location(s) to be sampled and intervals necessary to obtain samples representative of storm water associated with industrial activities generated within the corresponding drainage area. Dischargers are not required to sample discharge locations that have no exposure of industrial activities or materials as defined in Section XVII of this General Permit within the corresponding drainage area. However, Dischargers are required to conduct the monthly visual observations regardless of the selected locations to be sampled.

This General Permit defines a QSE as a precipitation event that produces a discharge from any drainage area that is preceded by 48 consecutive hours without a discharge from any drainage area. The previous permit did not include a QSE definition; instead, it utilized a different approach to defining the storm events that were required to be sampled. Under the previous permit, eligible storm events were storm events that occurred after three consecutive working days of dry weather. The three consecutive working days of dry weather definition in the previous permit led Dischargers to miss many opportunities to sample. Some Dischargers were unable to collect samples from two storm events in certain years under the previous definition. To resolve this difficulty, this General Permit increases the sampling requirements to four (4) QSEs per year, while decreasing the number of days without a discharge, resulting in additional opportunities for Dischargers to sample. Additionally, by eliminating the previous permit’s reference to “dry weather,” this General Permit allows some precipitation to occur between QSEs so long as there is no discharge from any drainage area. This change will result in more QSE sampling opportunities.

To improve clarity and consistency, the definitions contained in other storm water permits were considered with the goal of developing a standard definition for ‘dry weather’ for this General Permit. The 2008 MSGP sets a “measurable storm event” as one that produces at least 0.1 inches of precipitation and results in an actual discharge after 72 hours (three days) of dry weather. The State of Washington defines a “qualifying storm event” as a storm with at least 0.1 inches of precipitation preceded by at least 24 hours of no measurable precipitation, mirroring the definition found in the previous MSGP (2000 version). The State of Oregon requires that samples be taken in the first 12 hours of discharge and no less than 14 days apart. Review of other permits concludes that there is not a single commonly used approach to triggering sampling in industrial general permits. Therefore an enforceable sampling trigger is included in this General Permit.
permit that requires Dischargers to sample four storm events within each reporting year.

b. Effluent Water Quality Sampling and Analysis Parameters

Dischargers are required to sample and analyze their effluent for certain parameters. "Parameter" is a term used in laboratory analysis circles to represent a distinct, reportable measure of a particular type. For example, ammonia, hexavalent chromium, total nitrogen and chemical oxygen demand are all parameters that a laboratory can analyze storm water effluent for and report a quantity back. A parameter is also an indicator of pollution. In this General Permit, pH, total suspended solids and chemical oxygen demand are examples of indicator parameters. They are not direct measures of a water quality problem or condition of pollution but can be used to indicate a problem or condition of pollution. Indicator parameters can also be used to indicate practices and/or the presence of materials at a facility to bring forth information for compliance evaluation processes, like annual report review and inspection. For example, chemical oxygen demand concentrations can indicate the presence of dissolved organic compounds, like residual food from collected recycling materials.

Minimum parameter-specific monitoring is required for Dischargers, regardless of whether additional facility-specific parameters are selected. This General Permit requires some parameters to be analyzed and reported for the duration of permit coverage to develop comparable sampling data over time and over many storm events and to demonstrate compliance. The Regional Water Boards may use such data to evaluate individual facility compliance and assess the differences between various industries. Accordingly, the parameters selected correspond to a broad range of industrial facilities, are inexpensive to sample and analyze, and have sampling and analysis methods which are easy to understand and implement. Some analytical methods for field measurements of some parameters, such as pH, may be performed using relatively inexpensive field instruments and provides an immediate alert to possible pollutant sources.

The following three selected minimum parameters are considered indicator parameters, regardless of facility type. These parameters typically provide indication and/or the correlation of whether other pollutants are present in storm water discharge. These parameters were selected for the following reasons:

i. pH is a numeric measurement of the hydrogen-ion concentration. Many industrial facilities handle materials that can affect pH. A sample is considered to have a neutral pH if it has a value of 7. At values less than 7, water is considered acidic; above 7 it is considered alkaline or basic. Pure rain water in California typically has a pH value of approximately 7.

ii. Total Suspended Solids (TSS) is an indicator of the un-dissolved solids that are present in storm water discharge. Sources of TSS include sediment from erosion, and dirt from impervious (i.e., paved) areas. Many pollutants adhere to sediment particles; therefore, reducing sediment will reduce the amount of these pollutants in storm water discharge.
iii. Oil and Grease (O&G) is a measure of the amount of O&G present in storm water discharge. At very low concentrations, O&G can cause sheen on the surface of water. O&G can adversely affect aquatic life, create unsightly floating material, and make water undrinkable. Sources of O&G include, but are not limited to, maintenance shops, vehicles, machines and roadways.

The previous permit allowed Dischargers to analyze samples for either O&G or Total Organic Carbon (TOC). This General Permit requires all Dischargers analyze samples for O&G since almost all Dischargers with outdoor activities operate equipment and vehicles can potentially generate insoluble oils and greases. Dischargers with water soluble-based organic oils may be required to also test for TOC. The TOC and O&G tests are not synonymous, duplicative or interchangeable.

This General Permit removes the requirement to analyze for specific conductance as part of the minimum analytic parameters. Specific conductance is not required by U.S. EPA for any industry type. Additionally, stakeholder comments indicate that there are many non-industrial sources that may cause high specific conductance and interfere with the efficacy of the test. For example, salty air deposition that occurs at facilities in coastal areas may raise the specific conductance in water over 500 micro-ohms per centimeter (µhos/cm). Dischargers are not prevented from performing a specific conductance test as a screening tool if it is useful to detect a particular pollutant of concern as required (e.g. salinity).

This General Permit requires Dischargers subject to Subchapter N ELGs for pH to analyze for pH using approved test methods in accordance with 40 Code of Federal Regulations part 136. These federal regulations specify that analysis of pH must take place within 15 minutes of sample collection. All other Dischargers may screen for pH using wide range litmus pH paper or other equivalent pH test kits within 15 minutes of sample collection. If in any reporting year a Discharger has two or more pH results outside of the range of 6.0 – 9.0 pH units, that Discharger is required to comply with the approved test methods in 40 Code of Federal Regulations part 136 in subsequent reporting years.

For almost all Dischargers, obtaining laboratory analysis within 15 minutes is logistically impossible. For many Dischargers, maintaining a calibrated pH meter is difficult, labor intensive, and error prone. Screening for pH will limit the number of additional Dischargers required to comply with 40 Code of Federal Regulations part 136 methods to those that have pH measures outside the range of 6.0-9.0 pH units. The use of wide range litmus pH paper or other equivalent pH test kits is not as accurate as a calibrated pH meter, however litmus paper is allowed in the 2008 MSGP, and when used properly it can provide an accurate screening measure to determine if further more-accurate pH sampling is necessary to determine compliance.

Review of available monitoring data shows that storm water discharges from most types of industrial facilities comply with the pH range of 6.0 to 9.0 pH units. There are specific types of industries, like cement or concrete manufacturers that
have shown a trend of higher pH values very close to 9.0 pH units. Rather than require all industries as a whole to monitor with the more costly 40 Code of Federal Regulations part 136 methods, this General Permit establishes a triggering mechanism for these more advanced pH test methods. The Regional Water Boards retain their authority to require more accurate test methods. Once a Discharger triggers the requirement to use the more accurate testing methods in 40 Code of Federal Regulations part 136, the Discharger may not revert back to screening for pH for the duration of coverage under this General Permit.

In the early 1990s, U.S. EPA, through its group application program, evaluated nationwide monitoring data and developed the listed parameters and SIC associations shown in Table 1 of this General Permit. The 2008 MSGP requires that Dischargers analyze storm water effluent for the listed parameters under certain conditions. In addition to the parameters in Table 1 of this General Permit, Dischargers are required to select additional facility-specific analytical parameters to be monitored, based upon the types of materials that are both exposed to and mobilized by contact with storm water. Dischargers must, at a minimum, understand how to identify industrial materials that are handled outdoors and which of those materials can easily dissolve or be otherwise transported via storm water.

The Regional Water Boards have the authority to revise the monitoring requirements for an individual facility or group of facilities based on site-specific factors including geographic location, industry type, and potential to pollute. For example, the Los Angeles Regional Water Board required all dismantlers (SIC Code 5015) within their jurisdiction to monitor for copper and zinc instead of aluminum and iron during the term of the previous permit. SMARTS will be programmed to incorporate any monitoring revisions required by the Regional Water Boards. Dischargers will receive email notification of the monitoring requirement revision and their SMARTS analytical reporting input screen will display the corresponding revisions. Dischargers may add, but not otherwise modify, the sampling parameters on their SMARTS input screen.

Dischargers are also required to identify pollutants that may cause or contribute to an existing exceedance of any applicable water quality standards for the receiving water. This General Permit requires Dischargers to control its discharge as necessary to meet the receiving water limitations, and to select additional monitoring parameters that are representative of industrial materials handled at the facility (regardless of the degree of storm water contact or relative mobility) that may be related to pollutants causing a water body to be impaired.

4. Methods and Exceptions

a. Storm Water Discharge Locations

Dischargers are required to visually observe and collect samples of industrial storm water discharges from each drainage area at all discharge locations. These samples must be representative of the storm water discharge leaving each drainage area. This is a change from the previous permit which allowed a
Dischargers are required to reduce the number of discharge locations sampled if two or more discharge locations were substantially similar.

Dischargers are required to identify, when practicable, alternate discharge locations if: (1) the facility’s industrial drainage areas are affected by storm water run-on from surrounding areas that cannot be controlled, or (2) discharge locations are difficult to observe or sample (e.g. submerged discharge outlets, dangerous discharge location accessibility).

b. Representative Sampling Reduction

Some stakeholders have indicated that there are unique circumstances where sampling a subset of representative discharge locations fully characterizes the full set of storm water discharges. Stakeholders provided examples related to drainage areas with multiple discharge locations where sampling only a subset of these discharge locations produces results that are representative of the drainage areas’ storm water discharges. In such situations, this General Permit allows Dischargers to reduce the number of discharge locations. For each drainage area with multiple discharge locations (e.g. roofs with multiple downspouts, loading/unloading areas with multiple storm drain inlets), the Discharger may reduce the number of discharge locations to be sampled if the conditions in Section XI.C.4 of this General Permit are met.

c. Qualified Combined Samples

Dischargers may combine samples from up to four (4) discharge locations if the industrial activities within each drainage area and each drainage area’s physical characteristics (i.e. grade, surface materials) are substantially similar.

Dischargers are required to provide documentation in the Monitoring Implementation Plan supporting that the above conditions have been evaluated and fulfilled. A Discharger may combine samples from more than four (4) discharge locations only with approval from the appropriate Regional Water Board.

d. Sample Collection and Visual Observation Exceptions

Dischargers are not required to collect samples or conduct visual observations during dangerous weather conditions such as flooding or electrical storms, or outside of scheduled facility operating hours. A Discharger is not precluded from conducting sample collection activities or visual observations outside of scheduled facility operating hours.

In the event that a Discharger is unable to collect the required samples or conduct visual observations due to the above exceptions, the Discharger must include an explanation of the conditions obstructing safe monitoring in its Annual Report. If access to a discharge location is dangerous on a routine basis, a Discharger must choose an alternative discharge location in accordance with General Permit Section XI.C.3.
e. Sampling Frequency Reduction

Facilities that do not have NAL exceedances for four (4) consecutive QSEs are unlikely to pose a significant threat to water quality. If the storm water from these facilities is also in full compliance with this General Permit, the Discharger is eligible for a reduction in sampling frequency. The Sampling Frequency Reduction allows a Discharger to decrease its monitoring from four (4) samples within each reporting year to one (1) QSE within the first half of each reporting year (July 1 to December 31) and one (1) QSE within the second half of each reporting year (January 1 to June 30). If a Discharger has a subsequent NAL exceedance after the Sampling Frequency Reduction, it must comply with the original sampling requirements of this General Permit. Only Dischargers that have baseline status or that have satisfied the Level 1 requirements are eligible for this sampling and analysis reduction.

A Discharger requesting to reduce its sampling frequency shall certify and submit a Sampling Frequency Reduction certification via SMARTS. The Sampling Frequency Reduction certification shall include documentation that the General Permit conditions for the Sampling Frequency Reduction have been satisfied.

Dischargers participating in a Compliance Group and certifying a Sampling Frequency Reduction are only required to collect and analyze storm water samples from one (1) QSE within each reporting year. These Dischargers must receive year-round compliance assistance from their Compliance Group Leader and must comply with all requirements of this General Permit.

5. Facilities Subject to Federal Storm Water Effluent Limitation Guidelines (ELGs)

Federal regulations at Subchapter N establish ELGs for industrial storm water discharges from facilities in eleven industrial sectors. For these facilities, compliance with the ELGs constitutes compliance with the technology standard of BPT, BAT, BCT, or New Source Performance Standards provided in the ELG for the specified pollutants, and compliance with the technology-based requirements in this General Permit for the specified pollutant.

K. Exceedance Response Actions (ERAs)

1. General

The previous permit did not incorporate the benchmarks from any of the MSGPs or NALs for Dischargers to evaluate sampling results. Unlike the requirements for industrial storm water discharges that cause or contribute to an exceedance of a water quality standards, the previous permit did not provide definitions, procedures or guidelines to assess sampling results. Many Regional Water Boards have formally or informally notified Dischargers that exceedances of the MSGP benchmarks should be used to determine whether additional BMPs are necessary. However, there was considerable confusion as to the extent to which a Discharger would be expected to implement actions in response to exceedances of these values, and the timelines that had to be met to prevent an enforcement action. The lack of specificity with regards to what constituted an exceedance, and what actions
are required in response to an exceedance, have been identified as a problem by the Water Boards, industry and environmental stakeholders.

This General Permit contains two (2) types of NALs. Annual NALs function similarly to, and are based upon, the values provided in the 2008 MSGP. Instantaneous maximum NALs target hot spots or episodic discharges of pollutants and are established based on California industrial storm water discharge monitoring data. When a Discharger exceeds an NAL it is required to perform ERAs. The ERAs are divided into two levels of responses and can generally be differentiated by the number of years in which a facility’s discharge exceeds an NAL trigger. These two levels are explained further in Section XII of this General Permit. This ERA process provides Dischargers with an adaptive management-based process to develop and implement cost-effective BMPs that are protective of water quality and compliant with this General Permit. This process is also designed to provide Dischargers with a more defined pathway towards full compliance.

The ERA requirements in this General Permit were developed using best professional judgment and Water Board experience with the shortcomings of the previous permit’s compliance procedures. Public comments received during State Water Board hearings on the 2002, 2005, 2011, 2012 and 2013 draft permits, and NPDES industrial storm water discharge permits from other states with well-defined ERA requirements were also considered by the State Water Board.

The State Water Board presumes that one single NAL exceedance for a particular parameter is not a clear indicator that a facility’s discharge is out of compliance with the technology-based effluent limitations or receiving water limitations. This presumption recognizes the highly variable nature of storm water discharge and the limited value of a single quarterly grab sample to represent the quality of a facility’s storm water discharge for an entire storm event and all other non-sampled storm events. With this presumption, the State Water Board is addressing costly monitoring requirements that do not bring forth valuable compliance and/or water quality information.

2. NALs and NAL Exceedances

a. This General Permit contains two types of NAL exceedances as follows:

Annual NAL exceedance - the Discharger is required to calculate the average annual concentration for each parameter using the results of all sampling and analytical results for the entire facility for the reporting year (i.e., all "effluent" data), and compare the annual average concentration to the corresponding Annual NAL values in Table 2 of this General Permit. An annual NAL exceedance occurs when the annual average of all the sampling results for a parameter taken within a reporting year exceeds the annual NAL value for that parameter listed in Table 2 of this General Permit.

For the purposes of calculating the annual average concentration for each parameter, this General Permit considers any sampling result that are a "non-detect" or less than the method detection limit as a zero (0) value. The reason to use zero (0) values instead of the detected but not quantifiable
value (minimum level or reporting limit) is that these values are very low and are unlikely to contribute to an NAL exceedance. There are statistical methods to include low values when calculations are for numeric criteria and limitations, however, the NALs in this General Permit are approximate values used to provide feedback to the Discharger on site performance, and are not numeric criteria or limitations. Therefore, it is not necessary to include these insignificant values in the calculations for the NALs. For Dischargers using composite sampling or flow measurement in accordance with standard practices, the average concentrations shall be calculated in accordance with the U.S. EPA Guidance Manual for the Monitoring and Reporting Requirements of the NPDES Multi-Sector Storm Water General Permit.¹⁴

i. Instantaneous maximum NAL exceedance - the Discharger is required to compare all sampling and analytical results from each distinct sample (individual or combined) to the corresponding instantaneous maximum NAL values in Table 2 of this General Permit. An instantaneous maximum NAL exceedance occurs when two or more analytical results from samples taken for any parameter within a reporting year exceed the instantaneous maximum NAL value (for TSS and O&G), or are outside of the instantaneous maximum NAL range (for pH).

b. Instantaneous maximum NAL analysis

In its June 19, 2006 report, the Blue Ribbon Panel of Experts (Panel) made several specific recommendations for how to set numeric limitations in future industrial storm water general permit(s). For sites not subject to TMDLs, the Panel suggested that the numeric values be based upon industry types or categories, with the recognition that each industry has its own specific water quality issues and financial viability. Furthermore, the Panel concluded:

To establish Numeric Limits for industrial sites requires a reliable database, describing current emissions by industry types or categories, and performance of existing BMPs. The current industrial permit has not produced such a database for most industrial categories because of inconsistencies in monitoring or compliance with monitoring requirements. The Board needs to reexamine the existing data sources, collect new data as required and for additional water quality parameters (the current permit requires only pH, conductivity, total suspended solids, and either total organic carbon or oil and grease) to establish practical and achievable Numeric Limits.

The Panel suggested an alternative method that would allow the use of the existing Water Board dataset to establish action levels, referred to as the “ranked percentile” method. The Panel recommended:

The ranked percentile approach (also a statistical approach) relies on the average cumulative distribution of water quality data for each constituent developed from many water quality samples taken for many events at many locations. The Action Level would then be defined as those concentrations that consistently exceed some percentage of all water quality events (i.e. the 90th percentile). In this case, action would be required at those locations that were consistently in the outer limit (i.e. uppermost 10th percentile) of the distribution of observed effluent qualities from urban runoff.

After performing various data analysis exercises with the Water Board dataset, State Water Board staff concluded that the Water Board dataset is not adequate to calculate instantaneous NAL values using the Panel's recommended method for all of parameters that have annual NAL values based on the U.S. EPA benchmarks. Additionally, public comments on the January 2011 draft of this General Permit suggest that it is problematic to calculate NAL values based on the existing data. Therefore, the Water Board dataset was not used to calculate instantaneous NAL values for all parameters.

However, since all Dischargers regulated under the previous permit were required to sample for TSS and O&G/TOC, State Water Board staff found that the existing dataset for these parameters is of sufficient quality to calculate instantaneous NAL values. State Water Board staff also found that this data was less prone to what appear to be data input errors. The final dataset used to calculate the instantaneous NALs in this General Permit had outlier values that were eliminated from the dataset by using approved test method detection limits ranges. The methods and corresponding method detection limit ranges used to screen outliers are as follows:

- O&G - EPA 413.1 Applicable Range: 5-1,000 mg/L
- O&G - EPA 1664 Applicable Range: 5-1,000 mg/L
- TSS - EPA 160.2 Applicable Range: 4-20,000 mg/L

The intent of the instantaneous maximum NAL is to identify specific drainage areas of concern or episodic sources of pollution in industrial storm water that may indicate inadequate storm water controls and/or water quality impacts. In the effort to add instantaneous NAL exceedances to the ERA process, the State Water Board explored different options for the development of an appropriate value (i.e. percentile approach, benchmarks times a multiplier, confidence intervals). The California Stormwater Quality Association’s comments on the previous draft permit included a proposed method for calculating NAL values using a percentile approach. The State Water Board researched and evaluated this methodology and determined it is the most appropriate way to directly compare available electronic sampling data from Dischargers regulated under the previous permit. This percentile approach was used to establish the instantaneous maximum NALs in this General Permit, for discharges to directly compare with sampling results and identify drainage areas of water quality concern.
The percentile approach is a non-parametric approach identified in many statistical textbooks for determining highly suspect values. Highly suspect values are defined as values that exceed the limits of the outer fences of a box plot. Upper limits of the outer fence are calculated by adding three times the inter-quartile range (25th to 75th percentiles) to the upper-end of the inter-quartile range (the 75th percentile). The California Stormwater Quality Association calculated an NAL value of 401 mg/L for TSS using the percentile approach using the Water Board dataset. The State Water Board performed the same analysis with the same Water Board dataset and calculated a slightly different value of 396 mg/L; therefore, the instantaneous maximum NAL value for TSS of 400 mg/L was established. Applying the percentile approach to the existing O&G data results in the instantaneous maximum NAL value for O&G of 25 mg/L.

The State Water Board compared existing sampling data to the instantaneous maximum NAL values and concluded that seven (7) percent of the total samples exceeded the highly suspected value for TSS and 7.8 percent of the total samples exceeded the highly suspected value for O&G. These results suggest that the instantaneous maximum NAL values are adequate to identify drainage areas of concern statewide since they are not regularly exceeded. Using best professional judgment, the State Water Board concludes that an exceedance of these values twice within a reporting year is unlikely to be the result of storm event variability or random BMP implementation problems, and the use of the percentile approach is therefore appropriate.

Due to issues with the ranges of concentrations and the logarithmic nature of pH, statistical methods cannot be applied to pH in the same ways as other parameters. Review of storm water sampling data by the State Water Board and other stakeholders has shown that pH is not typically a parameter of concern for most industrial facilities. Accordingly, a range of pH limits established in Regional Water Board Basin Plans is implemented in this General Permit for the instantaneous maximum NAL values. Most Basin Plans set a water quality objective of 6.0 - 9.0 pH units for water bodies, an exceedance outside the range of 6.0 - 9.0 pH units is consistent with the water quality concerns for pH among Regional Water Boards. An industrial facility with proper BMP implementation is expected to have industrial storm water discharges within the range of 6.0 - 9.0 pH units.

High concentrations of TSS and O&G, or pH values outside the range of 6.0 – 9.0 pH units, in a discharge may be an indicator of potential BMP implementation or receiving water quality concerns with other pollutants with parameters that do not have an instantaneous maximum NAL value. The State Water Board may consider instantaneous maximum NAL values for other parameters in a subsequent reissuance of this General Permit, based on data collected during this General Permit term.

The percentile approach is considered by many stakeholders to be the best method to evaluate BMP performance and general effluent quality in a community or population where the vast majority of the industrial facilities are implementing sufficient pollutant control measures. The Water Board’s current
dataset does not provide a way of evaluating actual BMP implementation at each facility when analyzing the data; therefore the monitoring information reported during the previous permit term cannot be linked to compliance with technology-based standards. The State Water Board intends to use data collected during this General Permit term to evaluate the percentile approach, improve the quality of collected data for other parameters, and further develop an understanding of how reported data relates to implemented BMP-control technologies.

Under this General Permit, a Discharger enters Level 1 status and must fulfill the Level 1 status ERA requirements following its first occurrence of any NAL exceedance. Level 2 status ERA requirements follow the second occurrence of an NAL exceedance for the same parameter in a subsequent reporting year. This ERA process provides Dischargers with an adaptive management-based process to develop and implement cost-effective BMPs that are protective of water quality and compliant with this General Permit. This General Permit’s ERA process is designed to have a well-defined compliance end-point. It is not a violation of this General Permit to exceed the NAL values; it is a violation of the permit, however, to fail to comply with the Level 1 status and Level 2 status ERA requirements in the event of NAL exceedances.

The State Water Board acknowledges that storm water discharge concentrations are often highly variable and dependent upon numerous circumstances such as storm size, the time elapsed since the last storm, seasonal activities, and the time of sample collection. Since there are potential enforcement consequences for failure to comply with this General Permit’s ERA process, the State Water Board’s intention is to use NAL exceedances to solely require Dischargers with recurring annual NAL exceedances or drainage areas that produce recurring instantaneous maximum NAL exceedances to be subject to the follow-up ERA requirements.

If NALs exceedances do not occur, the State Water Board generally expects that the Discharger has implemented sufficient BMPs to control storm water pollution. When NAL exceedances do occur, however, the potential that the Discharger may not have implemented appropriate and/or sufficient BMPs increases, and the Discharger is required to implement escalating levels of ERAs. If NAL exceedances occur, this General Permit requires Dischargers to evaluate and potentially install additional BMPs, or re-evaluate and improve existing BMPs to be in compliance with this General Permit.

3. Baseline Status

At the beginning of a Discharger’s NOI coverage under this General Permit, the Discharger has Baseline status. A Discharger demonstrating compliance with all NALs will remain at Baseline status and is not required to complete Level 1 status and Level 2 status ERA requirements.

If a Discharger has returned to Baseline status (from Level 2 status) and additional NAL exceedances occur, the Discharger goes into Level 1 status, then potentially
Level 2 status. Dischargers do not go directly into Level 2 status from Baseline status.

4. Level 1 Status

Regardless of when an NAL exceedance occurs during Baseline status, a Discharger's status changes from Baseline status to Level 1 status on July 1 of the subsequent reporting year. By October 1 following the commencement of Level 1 status, the Discharger is required to appoint a QISP to assist with the completion of the Level 1 Evaluation. The Level 1 Evaluation must include a review of the facility's SWPPP for compliance with the effluent and receiving water limitations of this General Permit, an evaluation of the industrial pollutant sources at the facility that are or may be related to the NAL exceedance(s), and identification of any additional BMPs that will eliminate future exceedances. When conducting the Level 1 Evaluation, a Discharger must ensure that all potential pollutant sources that could be causing or contributing to the NAL exceedance(s) are fully characterized, that the current BMPs are adequately described, that employees responsible for implementing BMPs are appropriately trained, and that internal procedures are in place to track that BMPs are being implemented as designed in the SWPPP. A Discharger is additionally required to evaluate the need for additional BMPs. Level 1 ERAs are designed to provide the Discharger the opportunity to improve existing BMPs or add additional BMPs to comply with the requirements of this General Permit.

By January 1 following commencement of Level 1 status, a Discharger is required to certify and submit via SMARTS a Level 1 ERA Report prepared by a QISP. The Level 1 ERA Report must contain a summary of the Level 1 Evaluation, all new or revised BMPs added to the SWPPP.

In most cases, the State Water Board believes that Level 1 status BMPs will be operationally related rather than structural and, therefore can be implemented without delay. Recognizing that a Discharger should not be penalized for sampling results obtained before implementing BMPs, sampling results for parameters and their corresponding drainage areas that caused the NAL exceedance up to October 1 or the date the BMPs were implemented, whichever is sooner, will not be used for calculating NAL exceedances. Although this General Permit allows up to January 1 to implement Level 1 status BMPs, the State Board has chosen an interim date of October 1 to encourage more timely Level 1 BMP implementation. Dischargers who implement Level 1 BMPs after October 1 may risk obtaining subsequent sampling results that may cause them to go into Level 2 status.

5. Level 2 Status

Level 2 ERAs are required during any subsequent reporting year in which the same parameter(s) has an NAL exceedance (annual average or instantaneous maximum), if this occurs, a Discharger’s status changes from Level 1 status to Level 2 status on July 1 of the subsequent reporting year. Dischargers with Level 2 status must further evaluate BMP options for their facility. Dischargers may have to implement additional BMPs, which may include physical, structural, or mechanical devices that
are intended to prevent pollutants from contacting storm water. Examples of such controls include, but are not limited to:

- Enclosing and/or covering outdoor pollutant sources within a building or under a roofed or tarped outdoor area.
- Physically separating the pollutant sources from contact with run-on of uncontaminated storm water.
- Devices that direct contaminated storm water to appropriate treatment BMPs (e.g., discharge to sanitary sewer as allowed by local sewer authority).
- Treatment BMPs including, but not limited to, detention ponds, oil/water separators, sand filters, sediment removal controls, and constructed wetlands.

Dischargers may select the most cost-effective BMPs to control the discharge of pollutants in industrial storm water discharges. Where appropriate, BMPs can be designed and targeted for various pollutant sources (e.g., providing overhead coverage for one potential pollutant while discharging to a detention basin for another source may be the most cost-effective solution).

a. Level 2 ERA Action Plans

The State Water Board acknowledges that there may be circumstances that make it difficult, if not impossible, for a Discharger to immediately implement additional BMPs. For example, it may take time to get a contract for construction in place, obtain necessary building permits, and design and construct the BMPs. Dischargers may also suspect that pollutants are from a non-industrial or natural background source and need time to study their site. A Discharger is required to certify and submit an Action Plan prepared by a QISP via SMARTS by January 1 following the reporting year in which the NAL exceedance that resulted in the Discharger entering Level 2 occurred. The Level 2 ERA Action Plan requires a Discharger to propose actions necessary to complete the Level 2 ERA Technical Report, the demonstrations the Discharger has selected, and propose a time frame for implementation.

If a Discharger changes the QISP assisting with the Level 2 ERA requirements this General Permit requires the Discharger to update the QISP information via SMARTS. Current information on individuals assisting Dischargers with compliance of this General Permit provides the Water Boards with the necessary contact information if there are questions on the submitted documents, and for possible verification of a QISP’s certification.

Dischargers are required to address each Level 2 NAL exceedance in an Action Plan. The State Water Board recognizes that Dischargers with Level 2 status may have multiple parameters or facility areas that have Level 2 NAL exceedances and the timing of the exceedances may make it very difficult to address all Level 2 NAL exceedances in one Action Plan. When Level 2 ERA exceedances occur in subsequent reporting years, after an Action Plan is
certified and submitted, a Discharger will need to develop an Action Plan for this new Level 2 NAL exceedance. This General Permit defines new Level 2 NAL exceedances as an exceedance for a new parameter in any drainage area at the facility, or an exceedance for the same parameter being addressed in an existing Action Plan, but where the exceedance occurred in a different drainage area than identified in the existing Action Plan.

b. Level 2 ERA Technical Reports

The Level 2 ERA Technical Report contains three different options that require a Discharger to submit demonstrations showing the cause of the NAL exceedance(s). This General Permit requires a Discharger to appoint a QISP to prepare the Level 2 ERA Technical Reports. The State Water Board acknowledges that there may be cases where a combination of the demonstrations may be appropriate; therefore a Discharger may combine any of the following three demonstration options in their Level 2 ERA Technical Report when appropriate. A Discharger is only required to annually update its Level 2 ERA Technical Report when necessary as defined in Section XII.D.3.c of this General Permit, and is not required to annually re-certify and re-submit the entire Level 2 ERA Technical Report. If there are no changes prompting an update of the Level 2 ERA Technical Report, as specified in Section XII.D.3.c of this General Permit, the Discharger will provide this certification in the Annual Report that there have been no changes warranting re-submittal of the Level 2 ERA Technical Report.

i. Industrial Activity BMPs Demonstration

The Industrial Activity BMPs Demonstration is for the following:

- Dischargers who decided to implement additional BMPs that are expected to eliminate future NAL exceedance(s) and that have been implemented in order to achieve compliance with the technology-based effluent limitations of this General Permit, and

- Dischargers who decided to implement additional BMPs that may not eliminate future NAL exceedance(s) and that have been implemented in order to achieve compliance with the technology-based effluent limitations of this General Permit.

When preparing the Industrial Activity BMPs Demonstration, the QISP shall identify and evaluate all individual pollutant source(s) associated with industrial activity that are or may be related to an NAL exceedance and all designed, information on the drainage areas associated with the Level 2 NAL exceedances, and installed BMPs that are implemented to reduce or prevent pollutants in industrial storm water discharges in compliance with this General Permit.
If an Industrial Activity BMPs Demonstration is submitted as the Level 2 ERA Technical Report and the Discharger is able to show reductions in pollutant concentrations below the NALs for four (4) subsequent consecutive QSEs, the Discharger returns to Baseline Status. A Discharger that submits an Industrial Activity BMPs Demonstration but has not installed additional BMPs that are expected to eliminate future NAL exceedance(s) will remain with Level 2 status but is not subject to additional ERAs unless directed by the Regional Water Board.

ii. Non-Industrial Pollutant Source Demonstration

A Non-Industrial Pollutant Source Demonstration is for a Discharger to demonstrate that the pollutants causing the NAL exceedances are not related to industrial activities conducted at the facility, and additional BMPs at the facility will not contribute to the reduction of pollutant concentrations.

Dischargers including the Non-Industrial Pollutant Demonstration in their Level 2 ERA Technical Report shall have a QISP determine that the sources of non-industrial pollutants in storm water discharges are not from industrial activity or natural background sources within the facility.

Sources of non-industrial pollutants that are discharged separately and are not comingled with storm water associated with industrial activity are not considered subject to this General Permit’s requirements. When pollutants from non-industrial sources are comingled with storm water associated with industrial activity, the Discharger is responsible for all the pollutants in the combined discharge unless the technical report clearly demonstrates that the NAL exceedances due to the combined discharge are solely attributable to the non-industrial sources. The pollutant may also be present due to industrial activities, in which case the Discharger must demonstrate that the pollutant contribution from the industrial activities by itself does not result in an NAL exceedance. In most cases, the Non-Industrial Pollutant Source Demonstration will contain sampling data and analysis distinguishing the pollutants from non-industrial sources from the pollutants generated by industrial activity.

Once the Level 2 ERA Technical Report, including this demonstration is certified and submitted via SMARTS, the Discharger has satisfied all the requirements necessary for that pollutant for ERA purposes. A Discharger that submits a Non-Industrial Pollutant Demonstration remains with Level 2 status but is not subject to additional ERAs unless directed by the Regional Water Board.

iii. Natural Background Pollutant Source Demonstration

The benchmark monitoring schedule in section 6.2.1.2 of the 2008 MSGP allows a Discharger to determine that the exceedance of the benchmark is attributable solely to the presence of that pollutant in the natural background. A Discharger making this determination is not required to perform corrective
action or additional benchmark monitoring providing that the other 2008 MSGP requirements are met. The 2008 MSGP Fact Sheet requires Dischargers to include in the following in the SWPPP: 1) map(s) showing the reference site location, facility, available land cover information, reference site and test site elevation, available geology and soil information for reference and test sites, photographs showing site vegetation, site reconnaissance survey data and records. This General Permit requires this information to be included in the Natural Background Pollutant Source Demonstration in Section XII.D.2.c.

The Natural Background Pollutant Source Demonstration in this General Permit is for a Discharger that can demonstrate that pollutants causing the NAL exceedances are not related to industrial activities conducted at the facility, and are solely attributable to the presence of those pollutants in natural background. The pollutant may also be present due to industrial activities, in which case the Discharger must demonstrate that the pollutant contribution from the industrial activities by itself does not result in an NAL exceedance. Natural background pollutants include those substances that are naturally occurring in soils or groundwater that have not been disturbed by industrial activities. Natural background pollutants do not include legacy pollutants from earlier activity on a site, or pollutants in run-on from neighboring sources which are not naturally occurring. Dischargers are not required to reduce concentrations for pollutants in the effluent caused by natural background sources if these pollutants concentrations are not increased by industrial activity.

The 2008 MSGP Fact Sheet states that the background concentration of a pollutant in runoff from a non-human impacted reference site in the same watershed must be determined by evaluation of ambient monitoring data or by using information from a peer-reviewed publication or a local, state, or federal government publication specific to runoff or storm water in the immediate region. Studies that are in other geographic areas, or are clearly based on different topographies or soils, are not sufficient to meet this requirement. When such data is not available, and there are no known sources of the pollutant, the background concentration should be assumed to be zero. In cases where historic monitoring data from a site are used for generating a natural background concentration, and the site is no longer accessible or able to meet reference site acceptability criteria, the Discharger must submit documentation (e.g., historic land use maps) indicating the site did meet reference site criteria (such as indicating the absence of human activity) during the time data collection occurred.

Once the Level 2 ERA Technical Report, including a Natural Background Demonstration meeting the conditions in Section XII.D.2.c of this General Permit is certified and submitted via SMARTS, the Discharger is no longer responsible for the identified background parameters(s) in the corresponding drainage area(s). A Discharger that submits this type of demonstration will
remain with Level 2 status but is not subject to additional ERAs unless directed by the Regional Water Board.

c. Level 2 ERA Implementation Extension

The State Water Board recognizes that there may be circumstances that make implementation of all necessary actions required in the Level 2 ERAs by the permitted due dates infeasible. In such circumstances a Discharger may request additional time by submitting a Level 2 ERA Implementation Extension. The Level 2 ERA Implementation Extension will automatically allow Dischargers up to an additional six (6) months to complete the tasks identified in the Level 2 ERA Action Plans while remaining in compliance with this General Permit. The Level 2 ERA Implementation Extension is subject to Regional Water Board review. If additional time is needed beyond the initial six (6) month extension, a second Level 2 ERA Implementation Extension may be submitted but is not effective unless it is approved by the Water Board.

L. Inactive Mining Operations

Inactive mining sites may need coverage under this General Permit. Inactive mining operations are mining sites, or portions of sites, where mineral mining and/or dressing occurred in the past with an identifiable Discharger (owner or operator), but are no longer actively operating. Inactive mining sites do not include sites where mining claims are being maintained prior to disturbances associated with the extraction, beneficiation, or processing of mined materials. A Discharger has the option to certify and submit via SMARTS that its inactive mining operations meet the conditions for an Inactive Mining Operation Certification in Section XIII of this General Permit. The Discharger must have a SWPPP for an inactive mine signed (wet signature with license number) by a California licensed professional engineer. The Inactive Mining Operation Certification in this General Permit is in lieu of performing certain identified permit requirements. This General Permit requires an annual inspection of an inactive mining site and an annual re-certification of the SWPPP. Any significant updates to the SWPPP shall be signed (wet signature and license number) by a California license professional engineer. The Discharger must certify and submit via SMARTS any significantly revised SWPPP within 30 days of the revision(s)

M. Compliance Groups and Compliance Group Leaders

Group Monitoring, as defined in the previous permit, has been eliminated in this General Permit and replaced with a new compliance option called Compliance Groups. The Compliance Group option differs from Group Monitoring as it requires (1) all Dischargers participating in a Compliance Group (Compliance Group Participants) sample two QSEs each year, (2) the Compliance Group Leader to inspect each Participant’s facility within each reporting year, (3) the Compliance Group Leader must complete a State Water Board sponsored or approved training program for Compliance Group Leaders, and (4) the Compliance Group Leader to prepare Consolidated Level 1 ERA Reports, and individual Level 2 ERA Action Plans and Technical Reports. The Compliance Group option is similar to Group Monitoring as it retains a mechanism that
allows Dischargers of the same industry type to comply with this General Permit through shared resources in a cost saving manner.

This General Permit emphasizes sampling and analysis as a means to evaluate BMP performance and overall compliance, and the significantly reduced sampling requirements previously afforded to Group Monitoring Participants (two samples within a five-year period) does not provide the necessary information to achieve these goals. However, a moderate reduction in sampling requirements is included as an incentive for Compliance Group Participants while concurrently requiring sufficient individual facility sampling data to determine compliance. A Compliance Group Leader is required to provide the necessary sampling training and guidance to the Compliance Group Participants. This additional training requirement will increase sampling data quality that will offset the reduced sampling frequency for Compliance Groups.

Participation in Compliance Groups will provide additional cost savings for Dischargers in the preparation of the Consolidated Level 1 ERA Reports, and for Compliance Group Leader assistance in preparing the Level 2 ERA Action Plans and the individual Level 2 ERA Technical Reports. It is likely that many of the pollutant sources causing NAL exceedances, and the corresponding BMP cost evaluation and selection, when appropriate, will overlap for groups of facilities in a similar industry type. When these overlaps occur, a Compliance Group Leader should be able to more efficiently evaluate the pollutant sources and BMP options, and prepare the necessary reports.

The State Water Board believes that it is necessary for Compliance Group Leaders to have a higher level of industrial storm water compliance and training experience than the expectations of a QISP. Many stakeholder comments on this General Permit suggested various certifications to provide this higher level of experience; however, the State Water Board believes a process similar to the Trainer of Record process for the Construction General Permit training program will develop Compliance Group Leaders with the appropriate level of experience to fulfill the necessary qualifications.

The intent of the Compliance Groups is to have only one or a small number of Compliance Groups per industrial sector. The process for becoming a QISP trainer and/or a Compliance Group Leader is purposely similar to the Construction General Permit trainer of record process for consistency within storm water regulatory leaders. The formal process to qualify to conduct trainings for QISPs and/or to be a Compliance Group Leader will include the submittal of a statement of qualifications for review, a review fee, completion of an exam and training specific to this role. For more information see the Construction General Permit trainer of record process: http://www.casqa.org/TrainingandEducation/ConstructionGeneralPermitTrainingQSDQSPToR/tabid/205/Default.aspx

After the initial Compliance Group registration, Compliance Group Leaders are required to submit and maintain their list of Compliance Group Participants via SMARTS. There are no additional administrative documents required. The previous permit required group leaders to provide annual group evaluation reports and a letter of intent to continue group monitoring. The State Water Board found these items to be resource intensive and placed an unnecessary administrative burden on group leaders. The
Compliance Group requirements in this General Permit reduces the administrative burden on both the Compliance Group Leaders and Water Board staff.

The State Water Board’s intent for the effluent data, BMP selection, cost, and performance information, and other industry specific information provided in Compliance Group reports is for evaluation of sector-specific permitting approaches and the use of NALs in the next reissuance of this General Permit.

N. Annual Evaluation

Federal regulations require NPDES industrial storm water Dischargers to evaluate their facility and SWPPP annually. Typically this requires an inspection of the facility to ensure: (1) the SWPPP site map is up to date, (2) control of all potential pollutant sources is included in the SWPPP, and (3) sampling data and visual observation records are used to evaluate if the proper BMPs are being implemented. As Dischargers are required to conduct monthly visual observation that partially overlap with the actions required by the annual evaluation requirements, Dischargers may perform the annual evaluation inspection concurrent with a monthly visual observation.

O. Annual Report

All Dischargers shall certify and submit via SMARTS an Annual Report no later than July 15 following each reporting year. The reporting requirements for this General Permit’s Annual Report are streamlined in comparison to the previous permit. The Annual Report now consists of two primary parts: (1) a compliance checklist indicating which permit requirements were completed and which were not (e.g., a Discharger who completes the required sampling of four QSEs during the reporting year, versus a Discharger who is only able to sample two QSEs during the reporting year), and (2) an explanation for items on the compliance checklist that were determined incomplete by the Discharger. Unlike the previous permit, the Annual Report does not require Dischargers to provide the details of each visual observation (such as name of observer, time of observation, observation summary, corrective actions, etc.) or provide the details of the Annual Comprehensive Site Evaluation. Dischargers, however, continue to be required to retain those records and have them available upon request. The Annual Report is further simplified through the immediate electronic reporting via SMARTS of sampling data and copies of the original laboratory reports instead of such information being included in the Annual Report.

P. Conditional Exclusion - No Exposure Certification (NEC) Requirements

This General Permit’s conditional exclusion requirements are similar to the requirements provided in 40 C.F.R. section 122.26(g)(3). Clarifications were added in this General Permit, however, to the types of “storm resistant shelters” and the periods when “temporary shelters” may be used in order to avert regulatory confusion. California does not have operating coal power plants, which are a major contributor to acid rain elsewhere in the United States. California does have nonpoint sources or atmospheric deposition that may locally impact the pH of the rain water, however this is
not categorized as acid rain as referred to by the U.S. EPA for the NEC coverage requirements. The No Exposure Guidance Document15 developed by the U.S. EPA mentions acid rain as a potential source of contaminants to consider for NEC coverage. The acid rain leachate language was not included in this General Permit’s Appendix 2 to clarify that Dischargers may qualify for NEC coverage, even if the facility has metal buildings or structures.

The Discharger shall certify and submit complete PRDs for NEC coverage via SMARTS. Based upon the State Water Board’s experience with reissuing and implementing the 2009 Construction General Permit, the transition for existing Dischargers to register under this new General Permit is staff resource intensive. The State Water Board staff is available to assist Dischargers requiring assistance with enrolling under this General Permit, both for NOI coverage and NEC coverage. The State Water Board has also experienced that more time is needed for its staff to assist Dischargers registering for NEC coverage. To provide better customer service to all Dischargers, three months have been added to the NEC coverage PRD submittal schedule for new and existing Dischargers (Section II.B.4 of this General Permit, extending the NEC coverage registration date to October 1, 2015.

Dischargers must annually inspect their facility to ensure continued compliance with NEC requirements, and annually re-certify and submit an NEC via SMARTS. Based on its regulatory experience, the State Water Board has determined that a five-year NEC re-certification period is inadequate. A significant percentage of facilities may revise, expand, or relocate their operations in any given year. Furthermore, a significant percentage of facilities experience turnover of staff knowledgeable of the NEC requirements and limitations. Accordingly, the State Water Board believes that annual NEC evaluation and re-certification requirements are appropriate to continually assure adequate program compliance.

Q. Special Requirements - Plastic Materials

Water Code section 13367 requires the Water Boards to implement measures that control discharges of preproduction plastic from point and nonpoint sources. The State Water Board intends to use this General Permit to regulate discharges of preproduction plastics from areas of facilities that are subject to this General Permit. A Regional Water Board may designate facilities, or areas of facilities, that are not otherwise subject to this General Permit, pursuant to Section XIX.F. For example, a Regional Water Board may designate Plastic Materials handling areas of a transportation facility that are not associated with vehicle maintenance as requiring coverage under this General Permit.

Preproduction plastics used by the plastic manufacturing industry are small in size and have the potential to mobilize in storm water. Preproduction plastic washed into storm water drains can move to waters of the United States where it contributes to the growing problem of plastic debris in inland and coastal waters. Water Code section 13367

outlines five mandatory BMPs that are required for all facilities that handle preproduction plastic. These mandatory BMPs are included in this General Permit.

The State Water Board has received comments regarding the Water Code requirements for Plastics Facilities to install a containment system for on-site storm drain locations that meet 1mm capture and 1-year 1-hour storm flow requirement standards. As a result, this General Permit includes the option under Water Code section 13367 that allows a plastics facility to propose an alternative BMP or suite of BMPs that can meet the same performance and flow requirements as a 1mm capture and 1-year 1-hour storm flow containment system standards. These alternative BMPs are to be submitted to the Regional Water Board for approval. This alternative is intended to allow the facility to develop BMPs that focus on pollution prevention measures that can perform as well as, or better than, the containment system otherwise required by the statute.

The State Water Board also includes two additional containment system alternatives in this General Permit that are considered to be equivalent to, or better than, the 1mm capture and 1-year 1-hour storm flow requirements:

- An alternative allowing plastic facilities to implement a suite of eight BMPs addressing the majority of potential sources of plastic discharges. This suite of BMPs is based on industry and U.S. EPA recommendations and Water Board experience with storm water inspections, violations, and enforcement cases throughout California.

- An alternative allowing a facility to operate in a manner such that all preproduction plastic materials are used indoors and pose no potential threat for discharge off-site. The facility is required to notify the Regional Water Board of the intent to seek this exemption and of any changes to the facility or operations that may disqualify the facility for the exemption. The exemption may be revoked by the Regional Water Board at any time.

Plastics facilities may use preproduction plastic materials that are less than 1mm in size, or produce materials, byproducts, or waste that is smaller than 1mm in size. These small size materials will pass through the 1mm capture containment system required by Water Code section 13367. Plastics facilities with sub-1mm materials must design a containment system to capture the smallest size material onsite with a 1-year 1-hour storm flow requirement, or propose alternative BMPs for Regional Water Board approval that meet the same requirements.

The remaining BMPs required by Water Code section 13367 are consistent with recommendations for handling and clean-up of preproduction plastics in the American Chemistry Council publication, *Operation Clean Sweep* and U.S. EPA’s publication *Plastic Pellets in the Aquatic Environment: Sources and Recommendations*. The State Water Board believes that the entire approach in this General Permit for plastic materials is consistent with Water Code section 13367.

R. Regional Water Board Authorities

The Regional Water Boards retain discretionary authority over many issues that may arise from industrial discharges within their respective regions. This General Permit
emphasizes the authority of the Regional Water Boards over specific requirements of this General Permit that do not meet region-specific water quality protection regulatory needs.

S. Special Conditions: Requirements for Dischargers Claiming the “No Discharge” Option in the Notice of Non-Applicability

1. General

Entities that operate facilities generating storm water associated with industrial activities that is not discharged to waters of the United States are not required to obtain General Permit coverage. Entities that have contacted the Water Boards to inquire what is necessary to avoid permit coverage have received inconsistent guidance. This has resulted in regulatory inconsistency and uncertainty as to whether they are in compliance if their industry operates without General Permit coverage. Depending upon how each Regional Water Board handles “No Discharge” claims, some facilities with advanced containment design may be required to obtain General Permit coverage while other facilities with less advanced containment design may be allowed to operate without General Permit coverage. Some stakeholders have complained that this type of regulatory inconsistency puts some facilities at an economically-competitive disadvantage given the costs associated with permit compliance.

U.S. EPA regulations do not provide a design standard, definition, or guidance as to what constitutes “No Discharge.” Unlike Conditional Exclusion requirements, U.S. EPA regulations do not require an entity to submit technical justification or certification that a facility does not discharge to waters of the United States (U.S.). Therefore entities have previously been allowed to self-determine that their facility does not discharge to water of the U.S. when using any containment design standard. The State Water Board does not have available information showing that most entities have adequately performed hydraulic calculations to determine the frequency of discharge corresponding to their containment controls or have had these hydraulic calculations reviewed or completed by a California licensed professional engineer. Although U.S. EPA makes clear that an unpermitted discharge to waters of the U.S. is a violation of the CWA, this leaves regulatory agencies with the very difficult task of knowing when any given facility discharges in order to carry-out enforcement actions.

In 1998, the Water Code was amended to require entities who are requested by the Water Boards to obtain General Permit coverage, but that have a valid reason to not obtain General Permit coverage, to submit a Notice of Non-Applicability (NONA). (Wat. Code, § 13399.30, subd. (a)(2)). The NONA covers multiple reasons why an entity is not required to be permitted including (1) facility closure, (2) not the legal owner, (3) incorrect SIC code, (4) eligibility for the Conditional Exclusion (No Exposure Certification), and (5) the facility not discharging to water of the U.S. (“No Discharge”). The previous permit contained definitions, requirements, and guidance that entities may reference to determine whether they are eligible to select any of the first four NONA reasons for not obtaining General Permit coverage. However, neither the previous permit nor the Water Code provide definitions, requirements,
and guidance for entities to determine whether they are eligible to indicate “No Discharge” on the NONA as a reason for not obtaining General Permit coverage.

This General Permit addresses and resolves the issues discussed above by establishing consistent, statewide eligibility requirements in Section XX.C for entities submitting NONAs indicating “No Discharge.” When requested by the Water Boards to obtain General Permit coverage, entities must meet these “No Discharge” eligibility requirements or obtain General Permit coverage. The Water Boards retain enforcement authority if a facility subsequently discharges.

2. “No Discharge” Eligibility Requirements

The entity must certify submit in SMARTS a NONA Technical Report signed (wet signature and license number) by a California licensed professional engineer that contains the analysis and details of the containment design supporting the “No Discharge” eligibility determination. Because containment design will require hydraulic calculations, soil permeability analysis, soil stability calculations, appropriate safety factor consideration, and the application of other general engineering principles, state law requires the technical report to be signed (wet signature and license number) by a California licensed professional engineer.

The State Water Board has selected a containment design target that, as properly applied will result in few, if any, discharges. The facility must either be:

a. Engineered and constructed to contain all storm water associated with industrial activities from discharging to waters of the United States. (The determination of what is a water of the United States can be complicated, and in certain circumstances, a discharge to groundwater that has a direct hydrologic connection to waters of the United States may constitute a discharge to a water of the United States.) Dischargers must base their information upon maximum historic precipitation event data (or series of events) from the nearest rain gauges as provided by the National Oceanic and Atmospheric Administration’s (NOAA) website, or other nearby precipitation data available from other government agencies. At a minimum, Dischargers must ensure that the containment design addresses maximum 1-hour, 24-hour, weekly, monthly, and annual precipitation data for the duration of the exclusion.

Design storm events are generally specified as a one-time expected hydraulic failure over a reoccurrence of years for a specified storm event. For example, if a design storm standard is a 100 year 24-hour event, then a facility’s containment system designed to contain the maximum volume of water would be expected to fall in 24 hours once every 100 years. Design standards vary dependent upon the regulatory program and the level of protection needed. Since California has considerable variations in climate/topography/soil conditions across the state, the “No Discharge” NONA eligibility requirements have been created so that each facility’s containment design can incorporate unique site specific circumstances to meet the requirement that discharges will not occur based upon past historical precipitation data. Facilities that are not designed to not meet the “No Discharge” eligibility requirements must obtain General Permit coverage.
b. Located in basins or other physical locations that are not hydrologically connected to waters of the United States.

The State Water Board considered allowing Entities to review United States Army Corp of Engineer maps to determine, without a California licensed professional engineer, whether their facility location is within a basin and/or other physical location that is not hydrologically connected to waters of the United States. The State Water Board believes that this determination can be difficult in some cases, or is likely to be performed incorrectly. In addition, there may be areas of the state that are not hydrologically connected to waters of the United States, but are not on United States Army Corps of Engineer maps. Therefore, all “No Discharge” Technical Reports must be signed (wet signature and license number) by a California licensed professional engineer.

3. Additional Considerations

The “No Discharge” determination does not cover storm water containment systems that transfer industrial pollutants to groundwater. Entities must determine whether designs that incorporate infiltration may discharge to and contaminate groundwater. If there is a threat to groundwater, Entities must contact the Regional Water Boards prior to construction of infiltration design elements.

Entities that have not eliminated all discharges that are subject to General Permit coverage (NOI Coverage or NEC Coverage) are ineligible to submit NONAs indicating “No Discharge.”
ATTACHMENT A

FACILITIES COVERED BY NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) GENERAL PERMIT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES (GENERAL PERMIT)

2. Manufacturing Facilities:

 Facilities with Standard Industrial Classifications (SICs) 20XX through 39XX, 4221 through 4225. (This category combines categories 2 and 10 of the previous general permit.)

3. Oil and Gas/Mining Facilities:

 Facilities classified as SICs 10XX through 14XX, including active or inactive mining operations (except for areas of coal mining operations no longer meeting the definition of a reclamation area under 40 Code of Federal Regulations. 434.11(1) because the performance bond issued to the facility by the appropriate Surface Mining Control and Reclamation Acts authority has been released, or except for areas of non-coal mining operations which have been released from applicable State or Federal reclamation requirements after December 17, 1990) and oil and gas exploration, production, processing, or treatment operations, or transmission facilities that discharge storm water contaminated by contact with or that has come into contact with any overburden, raw material, intermediate products, finished products, by-products, or waste products located on the site of such operations. Inactive mining operations are mining sites that are not being actively mined, but which have an identifiable owner/operator. Inactive mining sites do not include sites where mining claims are being maintained prior to disturbances associated with the extraction, beneficiation, or processing of mined material; or sites where minimal activities are undertaken for the sole purpose of maintaining a mining claim.

4. Hazardous Waste Treatment, Storage, or Disposal Facilities:

 Hazardous waste treatment, storage, or disposal facilities, including any facility operating under interim status or a general permit under Subtitle C of the Federal Resource, Conservation, and Recovery Act.

5. Landfills, Land Application Sites, and Open Dumps:

 Landfills, land application sites, and open dumps that receive or have received industrial waste from any facility within any other category of this Attachment; including facilities subject to regulation under Subtitle D of the Federal Resource, Conservation, and Recovery Act, and facilities that have accepted wastes from construction activities (construction activities include any clearing, grading, or excavation that results in disturbance).

6. Recycling Facilities:

 Facilities involved in the recycling of materials, including metal scrapyards, battery reclaimers, salvage yards, and automobile junkyards, including but limited to those classified as Standard Industrial Classification 5015 and 5093.

7. Steam Electric Power Generating Facilities:

 Any facility that generates steam for electric power through the combustion of coal, oil, wood, etc.

8. Transportation Facilities:

 Facilities with SICs 40XX through 45XX (except 4221-25) and 5171 with vehicle maintenance shops, equipment cleaning operations, or airport deicing operations. Only those portions of the facility involved in vehicle maintenance (including vehicle rehabilitation, mechanical repairs, painting, fueling, and lubrication) or other operations identified under this Permit as associated with industrial activity.

9. Sewage or Wastewater Treatment Works:

 Facilities used in the storage, treatment, recycling, and reclamation of municipal or domestic sewage, including land dedicated to the disposal of sewage sludge, that are located within the confines of the facility, with a design flow of one million gallons per day or more, or required to have an approved pretreatment program under 40 Code of Federal Regulations part 403. Not included are farm lands, domestic gardens, or lands used for sludge management where sludge is beneficially reused and are not physically located in the confines of the facility, or areas that are in compliance with Section 405 of the Clean Water Act.
ATTACHMENT B

ACRONYM LIST

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASBS</td>
<td>Areas of Special Biological Significance</td>
</tr>
<tr>
<td>BAT</td>
<td>Best Available Technology Economically Achievable</td>
</tr>
<tr>
<td>BCT</td>
<td>Best Conventional Pollutant Control Technology</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>BPT</td>
<td>Best Practicable Control Technology Currently Available</td>
</tr>
<tr>
<td>CBPELSG</td>
<td>California Board for Professional Engineers, Land Surveyors and Geologists</td>
</tr>
<tr>
<td>DWQ</td>
<td>Division of Water Quality</td>
</tr>
<tr>
<td>ELGs</td>
<td>Effluent Limitations Guidelines and New Source Performance Standards</td>
</tr>
<tr>
<td>ERA</td>
<td>Exceedance Response Action</td>
</tr>
<tr>
<td>MS4</td>
<td>Municipal Separate Storm Sewer System</td>
</tr>
<tr>
<td>MSGP</td>
<td>Multi Sector General Permit</td>
</tr>
<tr>
<td>NAL</td>
<td>Numeric Action Level</td>
</tr>
<tr>
<td>NAICS</td>
<td>North American Industrial Classification System</td>
</tr>
<tr>
<td>NEC</td>
<td>No Exposure Certification</td>
</tr>
<tr>
<td>NEL</td>
<td>Numeric Effluent Limitation</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NONA</td>
<td>Notice of Non Applicability</td>
</tr>
<tr>
<td>NOT</td>
<td>Notice of Termination</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NSPS</td>
<td>New Source Performance Standards</td>
</tr>
<tr>
<td>NSWD</td>
<td>Non Storm Water Discharges</td>
</tr>
<tr>
<td>O&G</td>
<td>Oil and Grease</td>
</tr>
<tr>
<td>PRDs</td>
<td>Permit Registration Documents</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality Assurance/Quality Control</td>
</tr>
<tr>
<td>QISP</td>
<td>Qualified Industrial Storm water Practitioner</td>
</tr>
<tr>
<td>QSE</td>
<td>Qualifying Storm Event</td>
</tr>
<tr>
<td>SIC</td>
<td>Standard Industrial Classification</td>
</tr>
<tr>
<td>SMARTS</td>
<td>Storm Water Multiple Application and Report Tracking System</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Storm Water Pollution Prevention Plan</td>
</tr>
<tr>
<td>TBEL</td>
<td>Technology Based Effluent Limitation</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TMDL</td>
<td>Total Maximum Daily Load</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids</td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>WDID</td>
<td>Waste Discharge Identification Number</td>
</tr>
<tr>
<td>WQBEL</td>
<td>Water Quality Based Effluent Limitation</td>
</tr>
</tbody>
</table>
ATTACHMENT C

GLOSSARY

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

Adoption Date April 1, 2014

Aerial Deposition
Total suspended particulate matter found in the atmosphere as solid particles or liquid droplets. Chemical composition of particulates varies widely, depending on location and time of year. Sources of airborne particulates include but are not limited to: dust, emissions from industrial processes, combustion products from the burning of wood and coal, combustion products associated with motor vehicle or non-road engine exhausts, and reactions to gases in the atmosphere. Deposition is the act of these materials being added to a landform.

Beneficial Uses
As defined in the California Water Code, beneficial uses of the waters of the state that may be protected against quality degradation, include but are not limited to, domestic, municipal, agricultural and industrial supply; power generation; recreation; aesthetic enjoyment; navigation; and preservation and enhancement of fish, wildlife, and other aquatic resources or preserves.

Best Available Technology Economically Achievable (BAT)
As defined by United States Environmental Protection Agency (U.S. EPA), BAT is a technology-based standard established by the Clean Water Act (CWA) as the most appropriate means available on a national basis for controlling the direct discharge of toxic and nonconventional pollutants to navigable waters. The BAT effluent limitations guidelines, in general, represent the best existing performance of treatment technologies that are economically achievable within an industrial point source category or subcategory.

Best Conventional Pollutant Control Technology (BCT)
As defined by U.S. EPA, BCT is a technology-based standard for the discharge from existing industrial point sources of conventional pollutants including biochemical oxygen demand (BOD), total suspended sediment (TSS), fecal coliform, pH, oil and grease.

Best Professional Judgment (BPJ)
The method used by permit writers to develop technology-based NPDES permits conditions on a case-by-case basis using all reasonably available and relevant data.
Best Management Practices (BMPs)
Scheduling of activities, prohibitions of practices, maintenance procedures, and other management practices to prevent or reduce the discharge of pollutants. BMPs also include treatment requirements, operating procedures, and practices to control site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage.

Chain of Custody
Form used to track sample handling as samples progress from sample collection to the laboratory. The chain of custody is also used to track the resulting analytical data from the laboratory to the client. Chain of custody forms can be obtained from an analytical laboratory upon request.

Debris
Litter, rubble, discarded refuse, and remains of destroyed inorganic anthropogenic waste.

Detected Not Quantifiable
A sample result that is between the Method Detection Limit (MDL) and the Minimum Level (ML).

Discharger
A person, company, agency, or other entity that is the operator of the industrial facility covered by this General Permit.

Drainage Area
The area of land that drains water, sediment, pollutants, and dissolved materials to a common discharge location.

Effective Date
The date, set by the State Water Resources Control Board (State Water Board), when at least one or more of the General Permit requirements take effect and the previous permit expires. This General Permit requires most of the requirements (such as SMARTs submittals, minimum BMPs, sampling and analysis requirements) to take effect on July 15, 2015.

Effluent
Any discharge of water either to the receiving water or beyond the property boundary controlled by the Discharger.

Effluent Limitation
Any numeric or narrative restriction imposed on quantities, discharge rates, and concentrations of pollutants that are discharged from point sources into waters of the United States, waters of the contiguous zone, or the ocean.
Erosion
The process by which soil particles are detached and transported by the actions of wind, water or gravity.

Erosion Control BMPs
Vegetation, such as grasses and wildflowers, and other materials, such as straw, fiber, stabilizing emulsion, protective blankets, etc., placed to stabilize areas of disturbed soils, reduce loss of soil due to the action of water or wind, and prevent water pollution.

Facility
A collection of industrial processes discharging storm water associated with industrial activity within the property boundary or operational unit.

Field Measurements
Testing procedures performed in the field with portable field-testing kits or meters.

Good Housekeeping BMPs
BMPs designed to reduce or eliminate the addition of pollutants through analysis of pollutant sources, implementation of proper handling/disposal practices, employee education, and other actions.

Industrial Materials
Includes, but is not limited to: raw materials, recyclable materials, intermediate products, final products, by product, waste products, fuels, materials such as solvents, detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substances designated under Section 101(14) of Comprehensive Environmental Response, Compensation, and Liability Act (CERLCA); any chemical the facility is required to report pursuant to Section 313 of Title III of Superfund Amendments and Reauthorization Act (SARA); fertilizers; pesticides; and waste products such as ashes, slag, and sludge and that are used, handled, stored, or disposed in relation to a facility's industrial activity.

Method Detection Limit
The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero.

Minimum Level
The lowest level at which the entire analytical system must give a recognizable signal and acceptable calibration point for the analyte. It is equivalent to the concentration of the lowest calibration standard, assuming that all method-specified sample weights, volumes, and cleanup procedures have been employed.

Monitoring Implementation Plan
Planning document included in the Storm Water Pollution Prevention Plan (SWPPP). Dischargers are required to record information on the implementation of the monitoring requirements in this General Permit. The MIP should include relevant information on:
the Monthly Visual Observation schedule, Sampling Parameters, Representative Sampling Reduction, Sample Frequency Reduction, and Qualified Combined Samples.

Monitoring Requirements
Includes sampling and analysis activities as well as visual observations.

Natural Background
Pollutants including substances that are naturally occurring in soils or groundwater. Natural background pollutants do not include legacy pollutants from previous activity at a facility, or pollutants in run-on from neighboring sources which are not naturally occurring.

New Discharge(r)
A facility from which there is a discharge, that did not commence the discharge at a particular site prior to August 13, 1979, which is not a new source as defined in 40 Code of Federal Regulations 122.29, and which has never received a finally effective NPDES permit for discharges at that site. See 40 Code of Federal Regulations 122.2.

Numeric Action Level (NAL) Exceedance
Annual NAL exceedance - the Discharger shall determine the average concentration for each parameter using the results of all the sampling and analytical results for the entire facility for the reporting year (i.e., all "effluent" data) and compare this to the corresponding Annual NAL values in Table 2. For Dischargers using composite sampling or flow measurement in accordance with standard practices, the average concentrations shall be calculated in accordance with the U.S. EPA Guidance Manual for the Monitoring and Reporting Requirements of the NPDES Multi-Sector Storm Water General Permit. An annual NAL exceedance occurs when the average of all the analytical results for a parameter from samples taken within a reporting year exceeds an annual NAL value for that parameter listed in Table 2 (or is outside the NAL pH range);

Instantaneous maximum NAL exceedance - the Discharger shall compare all sampling and analytical results from each distinct sample (individual or composite) to the corresponding Instantaneous maximum NAL values in Table 2. An instantaneous maximum NAL exceedance occurs when two or more analytical results from samples taken for any parameter within a reporting year exceed the instantaneous maximum NAL value (for TSS and O&G), or are outside of the instantaneous maximum NAL range (for pH).

Non Detect
Sample result is less than Method Detection Limit; Analyte being tested cannot be detected by the equipment or method.

Non-Storm Water Discharges (NSWDs)
Discharges that do not originate from precipitation events. Including but not limited to, discharges of process water, air conditioner condensate, non-contact cooling water, vehicle wash water, sanitary wastes, concrete washout water, paint wash water, irrigation water, or pipe testing water.

Numeric Action Level (NAL)
Pollutant concentration levels used to evaluate if best management practices are effective and if additional measures are necessary to control pollutants. NALs are not effluent limits. The exceedance of an NAL is not a permit violation.

Operator
In the context of storm water associated with industrial activity, any party associated with an industrial facility that meets either of the following two criteria:

a. The party has operational control over the industrial SWPPP and SWPPP specifications, including the ability to make modifications to those plans and specifications

b. The party has day-to-day operational control of activities at the facility which are necessary to ensure compliance with a SWPPP for the facility or other permit conditions (e.g., authorized to direct workers at a site to carry out activities required by the SWPPP or comply with other permit conditions).

pH
Unit universally used to express the intensity of the acid or alkaline condition of a water sample. The pH of natural waters tends to range between 6.0 and 9.0, with neutral being 7.0.

Plastic Materials
Plastic Materials are virgin and recycled plastic resin pellets, powders, flakes, powdered additives, regrind, dust, and other similar types of preproduction plastics with the potential to discharge or migrate off-site.

Qualified Industrial Storm Water Practitioner (QISP)
Only required once a Discharger reaches Level 1 status, a QISP is the individual assigned to ensure compliance with this General Permit or to assist New Dischargers with determining coverage eligibility for discharges to an impaired water body. A QISP’s responsibilities include implementing the SWPPP, performing the Annual Comprehensive Facility Compliance Evaluation (Annual Evaluation), assisting in the preparation of Annual Reports, performing ERAs, and training appropriate Pollution Prevention Team members. The individual must take the appropriate state approved or sponsored training to be qualified. Dischargers shall ensure that the designated QISP is geographically located in an area where they will be able to adequately perform the permit requirements at all of the facilities they represent.
Qualifying Storm Event (QSE)
A precipitation event that:

a. Produces a discharge for at least one drainage area; and
b. Is preceded by 48 hours with no discharge from any drainage area.

Regional Water Board
Includes the Executive Officer and delegated Regional Water Board staff.

Runoff Control BMPs
Measures used to divert run-on from offsite and runoff within the site.

Run-on
Discharges that originate offsite and flow onto the property of a separate facility or property or, discharges that originate onsite from areas not related to industrial activities and flow onto areas on the property with industrial activity.

Scheduled Facility Operating Hours
The time periods when the facility is staffed to conduct any function related to industrial activity, but excluding time periods where only routine maintenance, emergency response, security, and/or janitorial services are performed.

Sediment
Solid particulate matter, both mineral and organic, that is in suspension, is being transported, or has been moved from its origin by air, water, gravity, or ice and has come to rest on the earth's surface either above or below sea level.

Sedimentation
Process of deposition of suspended matter carried by water, wastewater, or other liquids that flow by gravity. Control of sedimentation is accomplished by reducing the velocity of the liquid below the point at which it can transport the suspended material.

Sediment Control BMPs
Practices that trap soil particles after they have been eroded by rain, flowing water, or wind. Includes those practices that intercept and slow or detain the flow of storm water to allow sediment to settle and be trapped (i.e., silt fence, sediment basin, fiber rolls, etc.).

Sheet Flow
Flow of water that occurs overland in areas where there are no defined channels and where the water spreads out over a large area at a uniform depth.

Source
Any facility or building, property, road, or area that causes or contributes to pollutants in storm water.
Storm Water
Storm water runoff, snowmelt runoff, and storm water surface runoff and drainage.

Storm Water Discharge Associated With Industrial Activity
The discharge from any conveyance which is used for collecting and conveying storm water and which is directly related to manufacturing, processing, or raw materials storage areas at an industrial plant as identified in Attachment A of this General Permit. The term does not include discharges from facilities or activities excluded from the NPDES program. The term includes, but is not limited to, storm water discharges from industrial plant yards; immediate access roads and rail lines used or traveled by carriers of raw materials; manufactured products, waste material, or by-products used or created by the facility; material handling sites; refuse sites; sites used for the application or disposal of process wastewaters (as defined at 40 C.F.R. section 401); sites used for the storage and maintenance of material handling equipment; sites used for residual treatment, storage, or disposal; shipping and receiving areas; manufacturing buildings; storage areas (including tank farms) for raw materials, and intermediate and finished products; and areas where industrial activity has taken place in the past and significant materials remain and are exposed to storm water. The term does not include discharges from facilities or activities excluded from the NPDES program under 40 C.F.R. section 122.

Material handling activities include the: storage, loading and unloading, transportation, or conveyance of any raw material, intermediate product, finished product, by-product, or waste product. The term excludes areas located on plant lands separate from the plant's industrial activities, such as office buildings and accompanying parking lots as long as the drainage from the excluded areas is not mixed with storm water drained from the above described areas. Industrial facilities (including industrial facilities that are federally, State, or municipally owned or operated that meet the description of the facilities listed in this paragraph) include those facilities designated under 40 C.F.R. section 122.26(a)(1)(v).

Structural Controls
Any structural facility designed and constructed to mitigate the adverse impacts of storm water and urban runoff pollution.

Total Suspended Solids (TSS)
The measure of the suspended solids in a water sample including inorganic substances such as soil particles, organic substances such as algae, aquatic plant/animal waste, and particles related to industrial/sewage waste, etc. The TSS test measures the concentration of suspended solids in water by measuring the dry weight of a solid material contained in a known volume of a sub-sample of a collected water sample. Results are reported in mg/L.
Toxicity
The adverse response(s) of organisms to chemicals or physical agents ranging from mortality to physiological responses, such as impaired reproduction or growth anomalies.

Trade Secret
Information, including a formula, pattern, compilation, program, device, method, technique, or process, that: (1) derives independent economic value, actual or potential, from not being generally known to the public or to other persons who can obtain economic value from its disclosure or use; and (2) is the subject of efforts that are reasonable under the circumstances to maintain its secrecy.

Turbidity
The cloudiness of water quantified by the degree to which light traveling through a water column is scattered by the suspended organic and inorganic particles it contains. The turbidity test is reported in Nephelometric Turbidity Units (NTU) or Jackson Turbidity Units (JTU).

Waters of the United States
Generally refers to surface waters, as defined for the purposes of the federal Clean Water Act.

Water Quality Objectives
Defined in the California Water Code as limits or levels of water quality constituents or characteristics which are established for the reasonable protection of beneficial uses of water or the prevention of nuisance within a specific area.

Water Quality Standards
Consists of beneficial uses, water quality objectives to protect those uses, an antidegradation policy, and policies for implementation. Water quality standards are established in Regional Water Quality Control Plans (Basin Plans) and statewide Water Quality Control Plans. U.S. EPA has also adopted water quality criteria (the same as objectives) for California in the National Toxics Rule and California Toxics Rule.
ATTACHMENT D

PERMIT REGISTRATION DOCUMENTS (PRDs)

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

This Attachment provides an example of the information Dischargers are required to submit in the PRDs via the Storm Water Multiple Application and Report Tracking System (SMARTS). The actual PRD requirements are in Section II of this General Permit.

A. Who Must Submit PRDs

All Dischargers that operate facilities as described in Attachment A of this General Permit are subject to either Notice of Intent (NOI) or No Exposure Certification (NEC) Coverage and shall comply with the PRD requirements in this General Permit.

B. Who Is Not Required to Submit PRDs

Dischargers that operate facilities described below are not required to submit PRDs:

1. Facilities that are not described in Attachment A;

2. Facilities that are described in Attachment A but do not have discharges of storm water associated with industrial activity to waters of the United States; or,

3. Facilities that are already covered by an NPDES permit for discharges of storm water associated with industrial activity.

C. Annual Fees for NOI and NEC Coverage

Annual Fees for NOI and NEC coverage are established through regulations adopted by the State Water Board and are subject to change (see California Code of Regulations, title 23, section 2200 et seq.).

D. When and How to Apply

Dischargers proposing to conduct industrial activities subject to this General Permit must electronically certify and submit PRDs via the Storm Water Multiple Application System.
PERMIT REGISTRATION DOCUMENTS (PRDS)

Reporting and Tracking System (SMARTS)\(^1\) no less than seven (7) days prior to the commencement of industrial activity. Existing Dischargers must submit PRDs for NOI coverage by July 1, 2015 or for NEC coverage by October 1, 2015.

E. PRD Requirements for NOI Coverage

1. Notice of Intent (NOI) and Signed Electronic Authorization Form.

2. Site Map (Section X.E of this General Permit).

3. Storm Water Pollution Prevention Plan (see Section X of this General Permit).

F. Description of PRDs for NOI Coverage

1. The Notice of Intent (NOI) requires the following information:

 a. Operator/Owner Information

 Operator/Owner Company or Organization Name
 Contact First Name
 Contact Last Name
 Title
 Street Address
 Address Line 2
 City/State/Zip
 Phone (e.g. 999-999-9999)
 E-mail (e.g. abc@xyz.com)
 Federal Tax ID

 b. Facility Information

 Facility Name
 WDID Number (if applicable)
 Contact First Name
 Contact Last Name
 Title
 Street Address
 Address Line 2
 City
 County
 Phone (e.g. 999-999-9999)

\(^1\) The State Water Board has developed the SMARTS online database system to handle registration and reporting under this General Permit. More information regarding SMARTS and access to the database is available online at https://smarts.waterboards.ca.gov, [as of June 26, 2013].
PERMIT REGISTRATION DOCUMENTS (PRDS)

Emergency Phone (e.g. 999-999-9999)
E-mail (abc@xyz.com)
State/Zip CA
Total Site Size (Acres)
Latitude (Decimal degrees only, minimum 5 significant digits, e.g. 99.99999)
Longitude (Decimal degrees only, minimum 5 significant digits, e.g. 99.99999)
Total Percentage Site Imperviousness Area of Facility (Acres)
Total Areas of Industrial Activities and Materials Exposed to Precipitation
Primary SIC Code
Secondary SIC Code
Tertiary SIC Code
Regional Water Board

c. Billing Information

Billing Name
Contact First Name
Contact Last Name
Title
Street Address
Address Line 2
City/State/Zip
Phone (e.g. 999-999-9999)
E-mail (e.g. abc@xyz.com)

d. Receiving Water Information

Does your facility's storm water flow directly or indirectly into waters of the US such as river, lake, ocean, etc. (check box for directly or indirectly)

i. Indirectly to waters of the US

ii. Storm drain system - Enter owner's name:

iii. Directly to waters of the US (e.g., river, lake, creek, stream, bay, ocean, etc.)

iv. Name of the receiving water: ____________________________
2. The Site Map(s) shall include the following Information:

a. The facility boundary;

b. Storm water drainage areas within the facility boundary;

c. Portions of any drainage area impacted by discharges from surrounding areas and flow direction of each drainage area;

d. On-facility surface water bodies;

e. Areas of soil erosion;

f. Location(s) of nearby water bodies (such as rivers, lakes, wetlands, etc.);

g. Location(s) of municipal storm drain inlets that may receive the facility’s industrial storm water discharges and authorized Non-Storm Water Discharges (NSWDs);

h. Locations of storm water collection and conveyance systems and associated points of discharge, and direction of flow;

i. Any structural control measures (that affect industrial storm water discharges, authorized NSWDs, and run-on);

j. All impervious areas of the facility, including paved areas, buildings, covered storage areas, or other roofed structures;

k. Locations where materials are directly exposed to precipitation;

l. Locations where significant spills or leaks identified (Section X.G.1.d of this General Permit) have occurred;

m. Areas of industrial activity subject to this General Permit;

n. All storage areas and storage tanks;

o. Shipping and receiving areas;

p. Fueling areas;
PERMIT REGISTRATION DOCUMENTS (PRDS)

q. Vehicle and equipment storage/maintenance areas;

r. Material handling and processing areas;

s. Waste treatment and disposal areas;

t. Dust or particulate generating areas;

u. Cleaning and material reuse areas; and,

v. Any other areas of industrial activity which may have potential pollutant sources.

3. The Storm Water Pollution Prevention Plan (SWPPP) must be prepared in accordance with Section X of this General Permit.

4. A NOI Certification by the Discharger that all PRDs submitted are correct and true.

5. SMARTS Electronic Authorization Form (Signed by any user authorized to certify and submit data electronically).

G. PRD Requirements for NEC Coverage

1. No Exposure Certification and Signed Electronic Authorization Form.

2. No Exposure Certification Checklist Consistent with Requirements in Section XVII.F.2 of this General Permit.

3. Current Site Map Consistent with Requirements in Section X.E of this General Permit.

H. Description of PRDs for NEC Coverage

1. The No Exposure Certification requires the following information:

 a. Operator/Owner Information

 Operator/Owner Name
 Contact First Name
 Contact Last Name
 Title
PERMIT REGISTRATION DOCUMENTS (PRDS)

Street Address
Address Line 2
City/State/Zip
Phone Ex (999-999-9999)
E-mail (abc@xyz.com)
Federal Tax ID

b. Facility Information

Facility Name
Contact First Name
Contact Last Name
Title
Street Address
Address Line 2
City
County
Phone Ex (999-999-9999)
Emergency Phone Ex (999-999-9999)
E-mail (abc@xyz.com)
State/Zip CA
Total Site Size (Acres)
Latitude (Decimal degrees only, minimum 5 significant digits, Ex 99.99999)
Longitude (Decimal degrees only, minimum 5 significant digits, Ex 99.99999)
Percent of Site Imperviousness (%)
Primary SIC Code
Secondary SIC Code
Tertiary SIC Code
Regional Water Board

c. Billing Information

Billing Name (if different than Operator/Owner)
Contact First Name
Contact Last Name
Title
Street Address
Address Line 2
City/State/Zip
Phone E.g. (999-999-9999)
E-mail (e.g. abc@xyz.com)

d. SMARTS Electronic Authorization Form - Signed by any user authorized to certify and submit data electronically.
e. Certification by the Discharger that all PRDs submitted are correct and true and that the conditions of no-exposure have been met.

2. The NEC Checklist (Section XVII.F.2 of this General Permit) must be prepared to demonstrate that, based upon a facility inspection and evaluation, none of the following industrial materials or activities are, or will be in the foreseeable future, exposed to precipitation:

a. Activities such as using, storing, or cleaning industrial machinery or equipment, and areas with materials or residuals from these activities;

b. Materials or residuals on the ground or in storm water inlets from spills/leaks;

c. Materials or products from past industrial activity;

d. Material handling equipment (except adequately maintained vehicles);

e. Materials or products during loading/unloading or transporting activities;

f. Materials or products stored outdoors (except final products intended for outside use, e.g., new cars, where exposure to storm water does not result in the discharge of pollutants);

g. Materials contained in open, deteriorated or leaking storage drums, barrels, tanks, and similar containers;

h. Materials or products handled/stored on roads or railways owned or maintained by the Discharger;

i. Waste material (except waste in covered, non-leaking containers, e.g., dumpsters). Application or disposal of processed wastewater (unless already covered by an NPDES permit); and,

j. Particulate matter or visible deposits of residuals from roof stacks/vents evident in the storm water outflow.

3. The Site Map(s) shall include the following information (see Section X.E of this General Permit):

a. The facility boundary;

b. Storm water drainage areas within the facility boundary;

c. Portions of any drainage area impacted by discharges from surrounding areas and flow direction of each drainage area;
d. On-facility surface water bodies;

e. Areas of soil erosion;

f. Location(s) of nearby water bodies (such as rivers, lakes, wetlands, etc.);

g. Location(s) of municipal storm drain inlets that may receive the facility’s industrial storm water discharges and authorized NSWDs;

h. Locations of storm water collection and conveyance systems and associated points of discharge, and direction of flow;

i. Any structural control measures (that affect industrial storm water discharges, authorized NSWDs, and run-on);

j. All impervious areas of the facility, including paved areas, buildings, covered storage areas, or other roofed structures;

k. Locations where materials are directly exposed to precipitation and the locations where significant spills or leaks identified (Section X.G.1.d of this General Permit) have occurred;

l. Areas of industrial activity subject to this General Permit;

m. All storage areas and storage tanks;

n. Shipping and receiving areas;

o. Fueling areas;

p. Vehicle and equipment storage/maintenance areas;

q. Material handling and processing areas;

r. Waste treatment and disposal areas;

s. Dust or particulate generating areas;

t. Cleaning and material reuse areas; and,

u. Any other areas of industrial activity which may have potential pollutant sources.
I. Obtaining Coverage

To obtain coverage under this General Permit PRDs must be included and completed. If any of the required items are missing, the PRD submittal is considered incomplete and will be rejected. Upon receipt of a complete PRD submittal, the State Water Board will process the application package in the order received and assign a (WDID) number.

J. Additional Information

The Water Board may require the submittal of additional information in SMARTS if required to determine the appropriate fee for the facility as specified by the fee regulations.

K. Questions

If you have any questions on completing the PRDs or about SMARTS, please email stormwater@waterboards.ca.gov or call (866) 563-3107.
ATTACHMENT E

LIST OF TOTAL MAXIMUM DAILY LOADS (TMDLS)
APPLICABLE TO INDUSTRIAL STORM WATER DISCHARGERS

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

The following table contains a list of Regional Water Board adopted and/or U.S. EPA established/approved TMDLs, as of the adoption date of this General Permit, that are applicable to industrial storm water Dischargers. TMDLs adopted/established after the effective date of the General Permit may, at the Water Board's discretion, be included in this General Permit. This General Permit may be reopened to amend TMDL-specific permit requirements in this Attachment E, or to incorporate new TMDLs adopted during the term of this General Permit that include requirements applicable to Dischargers covered by this General Permit.

<table>
<thead>
<tr>
<th>Water Body</th>
<th>Pollutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco Bay Regional Water Quality Control Board</td>
<td></td>
</tr>
<tr>
<td>Napa River</td>
<td>Sediment</td>
</tr>
<tr>
<td>Sonoma Creek</td>
<td>Sediment</td>
</tr>
<tr>
<td>Los Angeles Regional Water Quality Control Board</td>
<td></td>
</tr>
<tr>
<td>Santa Clara River Reach 3</td>
<td>Chloride</td>
</tr>
<tr>
<td>Santa Clara River</td>
<td>Nutrients</td>
</tr>
<tr>
<td>Los Angeles River</td>
<td>Metals</td>
</tr>
<tr>
<td>Los Angeles River</td>
<td>Nutrients</td>
</tr>
<tr>
<td>San Gabriel River</td>
<td>Metals and Selenium</td>
</tr>
<tr>
<td>Santa Monica Bay</td>
<td>Nearshore Debris</td>
</tr>
<tr>
<td>Machado Lake</td>
<td>Nutrient</td>
</tr>
<tr>
<td>Harbor Beaches of Ventura</td>
<td>Bacteria</td>
</tr>
<tr>
<td>Ballona Creek</td>
<td>Metals</td>
</tr>
<tr>
<td>Ballona Creek Estuary</td>
<td>Toxic Pollutants</td>
</tr>
<tr>
<td>Los Angeles Harbor</td>
<td>Bacteria</td>
</tr>
<tr>
<td>Marina del Rey Back Basins</td>
<td>Bacteria</td>
</tr>
<tr>
<td>Santa Clara River</td>
<td>Bacteria</td>
</tr>
<tr>
<td>Walker Creek,</td>
<td>Mercury</td>
</tr>
<tr>
<td>Oxnard Drain No. 3</td>
<td>Pesticides, PCBs(^1) and Sediment Toxicity</td>
</tr>
<tr>
<td>Long Beach City Beaches and Los Angeles River Estuary</td>
<td>Indicator Bacteria</td>
</tr>
<tr>
<td>Los Angeles and Long Beach Harbors</td>
<td>Toxic and Metals</td>
</tr>
</tbody>
</table>

\(^1\) Polychlorinated biphenyls
<table>
<thead>
<tr>
<th>Location</th>
<th>Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Area Lakes</td>
<td>Nitrogen, Phosphorus, Mercury, Trash, Organochlorine Pesticides and PCBs</td>
</tr>
<tr>
<td>Santa Monica Bay</td>
<td>DDTs and PCBs</td>
</tr>
<tr>
<td>Machado Lake</td>
<td>Toxics</td>
</tr>
<tr>
<td>Colorado Lagoon</td>
<td>Pesticides, Polycyclic aromatic hydrocarbons, PCBs, and Metals</td>
</tr>
<tr>
<td>Colorado Lagoon</td>
<td>Pesticides, Polycyclic aromatic hydrocarbons, PCBs, and Metals</td>
</tr>
<tr>
<td>Calleguas Creek Watershed</td>
<td>Salts</td>
</tr>
<tr>
<td>Calleguas Creek Watershed</td>
<td>Metals and Selenium</td>
</tr>
<tr>
<td>Ballona Creek, Ballona Estuary, and Sepulveda Channel</td>
<td>Bacteria</td>
</tr>
<tr>
<td>Marina Del Rey Harbor-Back Basins</td>
<td>Copper, Lead, Zinc, and Chlordane, and Total PCBs</td>
</tr>
<tr>
<td>Los Cerritos Channel</td>
<td>Metals</td>
</tr>
<tr>
<td>Santa Ana Regional Water Quality Control Board</td>
<td></td>
</tr>
<tr>
<td>San Diego Creek and Newport Bay</td>
<td>Toxic Pollutants</td>
</tr>
<tr>
<td>San Diego Regional Water Quality Control Board</td>
<td></td>
</tr>
<tr>
<td>Chollas Creek</td>
<td>Diazinon</td>
</tr>
<tr>
<td>Chollas Creek</td>
<td>Copper, Lead, and Zinc</td>
</tr>
<tr>
<td>Los Peñasquitos Lagoon</td>
<td>Sediment</td>
</tr>
<tr>
<td>Rainbow Creek</td>
<td>Total Nitrogen and Total Phosphorus</td>
</tr>
<tr>
<td>Shelter Island Yacht Basin</td>
<td>Dissolved Copper</td>
</tr>
<tr>
<td>Baby Beach in Dana Point Harbor and Shelter Island Shoreline Park in SD Bay</td>
<td>Indicator Bacteria</td>
</tr>
<tr>
<td>Twenty Beaches and Creeks</td>
<td>Indicator Bacteria</td>
</tr>
</tbody>
</table>
ATTACHMENT F

EFFLUENT LIMITATION GUIDELINES (ELGs)

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

The following Parts of federal regulations at 40 Code of Federal Regulations Chapter I Subchapter N (Subchapter N) contain ELGs approved by US EPA for specific categories of industrial storm water discharges:

<table>
<thead>
<tr>
<th>Point Source Category</th>
<th>ELGs¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 411 - Cement Manufacturing</td>
<td>411.pdf</td>
</tr>
<tr>
<td>Part 418 - Fertilizer Manufacturing</td>
<td>418.pdf</td>
</tr>
<tr>
<td>Part 419 - Petroleum Refining</td>
<td>419.pdf</td>
</tr>
<tr>
<td>Part 422 - Phosphate Manufacturing</td>
<td>422.pdf</td>
</tr>
<tr>
<td>Part 423 - Steam Electric Power Generating</td>
<td>423.pdf</td>
</tr>
</tbody>
</table>

¹ The applicable ELGs are attached to this Attachment F. To view the attachments from an electronic (pdf) version of this Attachment F, left-click on the paper clip icon to the left of this pdf file to make the attachment window appear, then double-click on the icons of the attached pdf files. The attachments are also available on the Industrial Storm Water program pages of the State Water Resources Control Board’s website (www.waterboards.ca.gov).
<table>
<thead>
<tr>
<th>Point Source Category</th>
<th>ELGs²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 429 - Wetting of logs at wet deck storage areas</td>
<td></td>
</tr>
<tr>
<td>Part 434 - Coal Mining</td>
<td></td>
</tr>
<tr>
<td>Part 436 - Mineral Mining And Processing</td>
<td></td>
</tr>
<tr>
<td>Part 440 - Ore Mining And Dressing</td>
<td></td>
</tr>
<tr>
<td>Part 443 - Paving And Roofing Materials (Tars And Asphalt)</td>
<td></td>
</tr>
<tr>
<td>Part 445 - Landfills</td>
<td></td>
</tr>
<tr>
<td>Part 449 - Airport Deicing</td>
<td></td>
</tr>
</tbody>
</table>

²The applicable ELGs are attached to this Attachment F. To view the attachments from an electronic (pdf) version of this Attachment F, left-click on the paper clip icon to the left of this pdf file to make the attachment window appear, then double-click on the icons of the attached pdf files. The attachments are also available on the Industrial Storm Water program pages of the State Water Resources Control Board's website (www.waterboards.ca.gov).
New Source Performance Standards

New source performance standards (NSPS) represent the best available demonstrated control technology standards. US EPA has established NSPS guidelines for the industries found in the Table below. The intent of NSPS guidelines is to set effluent limitations that represent state-of-the-art treatment technology for new sources.3

Table 1 - Storm Water Specific NSPS Effluent Limitation Guidelines

<table>
<thead>
<tr>
<th>Regulated Discharge</th>
<th>40 CFR Section</th>
<th>Multi Sector General Permit Sector</th>
<th>NSPS</th>
<th>Date New Source Data Established</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge resulting from spray down or intentional wetting of logs as wet deck storage areas</td>
<td>Part 429, Subpart I</td>
<td>A</td>
<td>Yes</td>
<td>1/26/81</td>
</tr>
<tr>
<td>Runoff from phosphate fertilizer manufacturing facilities that comes into contact with any raw materials, finished products, by-products or waste products (SIC 2874)</td>
<td>Part 418, Subpart A</td>
<td>C</td>
<td>Yes</td>
<td>4/8/74</td>
</tr>
<tr>
<td>Runoff from asphalt emulsion facilities</td>
<td>Part 443, Subpart A</td>
<td>D</td>
<td>Yes</td>
<td>7/28/75</td>
</tr>
<tr>
<td>Runoff from materials storage piles at cement manufacturing facilities</td>
<td>Part 411, Subpart C</td>
<td>E</td>
<td>Yes</td>
<td>2/20/74</td>
</tr>
<tr>
<td>Mine dewatering discharges at crushed stone, construction sand and gravel, or industrial sand mining facilities</td>
<td>Part 436, Subparts B, C, D</td>
<td>J</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Runoff from hazardous waste and non-hazardous waste landfills</td>
<td>Part 445, Subparts A and B</td>
<td>K, L</td>
<td>Yes</td>
<td>2/2/00</td>
</tr>
<tr>
<td>Runoff from coal storage piles at steam electric generating facilities</td>
<td>Part 423</td>
<td>O</td>
<td>Yes</td>
<td>11/19/82 & 10/8/74</td>
</tr>
<tr>
<td>Discharges from primary airports with over 1,000 annual jet departures that conduct deicing operations</td>
<td>Part 449, Subpart A</td>
<td>S</td>
<td>Yes</td>
<td>NA</td>
</tr>
</tbody>
</table>

3 New source means any building, structure, facility, or installation from which there is or may be a "discharge of pollutants," the construction of which commenced: (1) After promulgation of standards of performance under section 306 of CWA which are applicable to such source, or (2) After proposal of standards of performance in accordance with section 306 of CWA which are applicable to such source, but only if the standards are promulgated in accordance with section 306 within 120 days of their proposal as defined in 40 C.F.R section 122.26.
ATTACHMENT G

REQUIREMENTS FOR DISCHARGERS WHO HAVE BEEN GRANTED AN OCEAN PLAN EXCEPTION FOR DISCHARGES TO ASBS

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) GENERAL PERMIT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES (GENERAL PERMIT)

A. Areas of Special Biological Significance (ASBS)

1. ASBS are defined in the California Ocean Plan as “those areas designated by the State Water Board as ocean areas requiring protection of species or biological communities to the extent that alteration of natural water quality is undesirable.”

2. The California Ocean Plan prohibits the discharge of waste to ASBS.

3. The California Ocean Plan authorizes the State Water Board to grant an exception to Ocean Plan provisions where the board determines that the exception will not compromise protection of ocean waters for beneficial uses and the public interest will be served.

4. On March 20, 2012, the State Water Board adopted Resolution 2012-0012 (amended by Resolution 2012-0031 on June 19, 2012) which contained a general exception to the California Ocean Plan for discharges of storm water and non-point sources (ASBS Exception). This resolution also contains the Special Protections that are to be implemented for direct discharges to ASBS. Resolution 2012-0012 is hereby incorporated by reference and its requirements must be complied with by industrial storm water Dischargers discharging directly to ASBS.

5. This General Permit requires Dischargers who have been granted an Ocean Plan exception for discharges to ASBS to comply with the requirements contained in the Special Protections. These requirements are contained below.

B. ASBS Non-Storm Water Discharges

1. The term “ASBS Non-Storm Water Discharges” means any waste discharges from a municipal separate storm sewer system (MS4) or other NPDES permitted storm drain system to an ASBS that are not comprised entirely of storm water.

2. Only the following ASBS Non-Storm Water Discharges are allowed, provided that the discharges are essential for emergency response purposes, structural stability, slope stability or occur naturally:
ATTACHMENT G

REQUIREMENTS FOR DISCHARGERS WHO HAVE BEEN GRANTED AN OCEAN PLAN EXCEPTION FOR DISCHARGES TO ASBS

a. Discharges associated with emergency fire fighting operations.

b. Foundation and footing drains.

c. Water from crawl space or basement pumps.

d. Hillside dewatering.

e. Naturally occurring groundwater seepage via a storm drain.

f. Non-anthropogenic flows from a naturally occurring stream via a culvert or storm drain, as long as there are no contributions of anthropogenic runoff.

3. Authorized ASBS Non-Storm Water Discharges shall not cause or contribute to a violation of the water quality objectives in Chapter II of the Ocean Plan nor alter natural ocean water quality in an ASBS.

4. At the San Clemente Island ASBS, discharges incidental to military training and research, development, test, and evaluation operations are allowed. Discharges incidental to underwater demolition and other in-water explosions are not allowed in the two military closure areas in the vicinity of Wilson Cove and Castle Rock. Discharges must not result in a violation of the water quality objectives, including the protection of the marine aquatic life beneficial use, anywhere in the ASBS.

5. At the San Nicolas Island and Begg Rock ASBS, discharges incidental to military research, development, testing, and evaluation of, and training with, guided missile and other weapons systems, fleet training exercises, small-scale amphibious warfare training, and special warfare training are allowed. Discharges incidental to underwater demolition and other in-water explosions are not allowed. Discharges must not result in a violation of the water quality objectives, including the protection of the marine aquatic life beneficial use, anywhere in the ASBS.

C. ASBS Compliance Plan

1. State Water Board Resolution 2012-0012 grants an exception to the Ocean Plan’s prohibition on discharges to ASBS (ASBS Exception) to applicants who were identified as Dischargers of industrial storm water to ASBS (ASBS Dischargers). Each ASBS Discharger shall specifically address the prohibition of ASBS Non-Storm Water Discharges and the requirement to maintain natural water quality for industrial storm water discharges to an ASBS in an ASBS Compliance Plan to be included in the ASBS Discharger’s SWPPP. The ASBS Compliance Plan is subject to approval by the Executive Director of the State Water Board. The ASBS Compliance Plan shall include:
REQUIREMENTS FOR DISCHARGERS WHO HAVE BEEN GRANTED AN OCEAN PLAN EXCEPTION FOR DISCHARGES TO ASBS

a. A map of surface drainage of storm water runoff, showing areas of sheet runoff and priority discharges, and a description of any structural Best Management Practices (BMPs) already employed and/or BMPs to be employed in the future. Priority discharges are those that pose the greatest water quality threat and which are identified as requiring installation of structural BMPs. The map shall also show the storm water conveyances in relation to other features such as service areas, sewage conveyances and treatment facilities, landslides, areas prone to erosion, and waste and hazardous material storage areas, if applicable. The SWPPP shall also include a procedure for updating the map and plan when changes are made to the storm water conveyance facilities.

b. A description of the measures by which all unauthorized ASBS Non-Storm Water Discharges (e.g., dry weather flows) has been eliminated, how these measures will be maintained over time, and how these measures are monitored and documented.

c. A description of how pollutant reductions in storm water runoff, that are necessary to comply with these special conditions, will be achieved through BMPs. Structural BMPs need not be installed if the Discharger can document to the satisfaction of the Executive Director that such installation would pose a threat to health or safety. BMPs to control storm water runoff discharges (at the end-of-pipe) during a design storm shall be designed to achieve on average the following target levels:

1) Table B Instantaneous Maximum Water Quality Objectives in Chapter II of the Ocean Plan; or

2) A 90% reduction in pollutant loading during storm events, for the applicant’s total discharges.

The baseline date for the reduction is March 20, 2012 (the effective date of the ASBS Exception), except for those structural BMPs installed between January 1, 2005 and the adoption of these special protections. The reductions must be achieved and documented by March 20, 2018.

d. A description of how the ASBS Discharger will address erosion and the prevention of anthropogenic sedimentation in the ASBS. The natural habitat conditions in the ASBS shall not be altered as a result of anthropogenic sedimentation.

e. A description of the non-structural BMPs currently employed and planned in the future (including those for construction activities), and include an implementation schedule. The ASBS Compliance Plan shall also describe the structural BMPs, including any low impact development (LID) measures, currently employed and planned for higher threat discharges and include an
implementation schedule. To control storm water runoff discharges (at the end-of-pipe) during a design storm, ASBS Dischargers must first consider using LID practices to infiltrate, use, or evapotranspiration storm water runoff on-site. The BMPs and implementation schedule shall be designed to ensure that natural water quality conditions in the receiving water are achieved and maintained by either reducing flows from impervious surfaces or reducing pollutant loading, or some combination thereof.

D. Reporting

If the results of the receiving water monitoring described in Section F. below (Sampling and Analysis Requirements) indicate that the storm water runoff is causing or contributing to an alteration of natural ocean water quality in the ASBS, the ASBS Discharger shall submit a report to the State Water Board within 30 days of receiving the results.

1. The report shall identify the constituents in storm water runoff that alter natural ocean water quality and the sources of these constituents.

2. The report shall describe BMPs that are currently being implemented, BMPs that are identified in the SWPPP for future implementation, and any additional BMPs that may be added to the SWPPP to address the alteration of natural water quality. The report shall include a new or modified implementation schedule for the BMPs.

3. Within 30 days of the approval of the report by the Executive Director, the ASBS Discharger shall revise its ASBS Compliance Plan to incorporate any new or modified BMPs that have been or will be implemented, the implementation schedule, and any additional monitoring required.

4. As long as the ASBS Discharger has complied with the procedures described above and is implementing the revised SWPPP, the Discharger does not have to repeat the same procedure for continuing or recurring exceedances of natural ocean water quality conditions due to the same constituent.

5. Compliance with this section does not excuse violations of any term, prohibition, or special condition contained in the Special Protections of the ASBS Exception.

E. Compliance Schedule

1. As of March 20, 2012, all unauthorized ASBS Non-Storm Water Discharges (e.g., dry weather flow) were effectively prohibited.

2. By September 20, 2013, the Discharger shall submit a draft written ASBS Compliance Plan to the Executive Director that describes its strategy to comply with these special conditions, including the requirement to maintain natural water
quality in the affected ASBS. The ASBS Compliance Plan shall include a description of appropriate non-structural controls and a time schedule to implement structural controls (implementation schedule) to comply with these special conditions for inclusion in the Discharger’s SWPPP.

3. By September 20, 2014, the Discharger shall submit the final ASBS Compliance Plan, including a description and final schedule for structural controls based on the results of runoff and receiving water monitoring.

4. By September 20, 2013, any non-structural controls that are necessary to comply with these special conditions shall be implemented.

5. By March 20, 2018, any structural controls identified in the ASBS Compliance Plan that are necessary to comply with these special conditions shall be operational.

6. By March 20, 2018, all Dischargers must comply with the requirement that their discharges into the affected ASBS maintain natural ocean water quality. If the initial results of post-storm receiving water quality testing indicate levels higher than the 85th percentile threshold of reference water quality data and the pre-storm receiving water levels, then the Discharger must re-sample the receiving water, pre- and post-storm. If after re-sampling the post-storm levels are still higher than the 85th percentile threshold of reference water quality data, and the pre-storm receiving water levels, for any constituent, then natural ocean water quality is exceeded. See Flowchart at the end of this Attachment.

7. The Executive Director may only authorize additional time to comply with the special conditions 5 and 6, above if good cause exists to do so. Good cause means a physical impossibility or lack of funding.

If a Discharger claims physical impossibility, it shall notify the Board in writing within thirty (30) days of the date that the Discharger first knew of the event or circumstance that caused or would cause it to fail to meet the deadline in 5. or 6. The notice shall describe the reason for the noncompliance or anticipated noncompliance and specifically refer to this Section of these requirements. It shall describe the anticipated length of time the delay in compliance may persist, the cause or causes of the delay as well as measures to minimize the impact of the delay on water quality, the measures taken or to be taken by the Discharger to prevent or minimize the delay, the schedule by which the measures will be implemented, and the anticipated date of compliance. The Discharger shall adopt all reasonable measures to avoid and minimize such delays and their impact on water quality.

The Discharger may request an extension of time for compliance based on lack of funding. The request for an extension shall require:
REQUIREMENTS FOR DISCHARGERS WHO HAVE BEEN GRANTED AN OCEAN PLAN EXCEPTION FOR DISCHARGES TO ASBS

a. for municipalities, a demonstration of significant hardship to Discharger ratepayers, by showing the relationship of storm water fees to annual household income for residents within the Discharger's jurisdictional area, and the Discharger has made timely and complete applications for all available bond and grant funding, and either no bond or grant funding is available, or bond and/or grant funding is inadequate; or

b. for other governmental agencies, a demonstration and documentation of a good faith effort to acquire funding through that agency’s budgetary process, and a demonstration that funding was unavailable or inadequate.

F. Additional Requirements – Waterfront and Marine Operations

In addition to the above provisions, a Discharger with waterfront and marine operations shall comply with the following:

1. For discharges related to waterfront and marine operations, the Discharger shall develop a Waterfront and Marine Operations Management Plan (Waterfront Plan). This plan shall contain appropriate Management Measures/Practices to address nonpoint source pollutant discharges to the affected ASBS.

 a. The Waterfront Plan shall contain appropriate Management Measures/Practices for any waste discharges associated with the operation and maintenance of vessels, moorings, piers, launch ramps, and cleaning stations in order to ensure that beneficial uses are protected and natural water quality is maintained in the affected ASBS.

 b. For discharges from marinas and recreational boating activities, the Waterfront Plan shall include appropriate Management Measures, described in The Plan for California’s Nonpoint Source Pollution Control Program, for marinas and recreational boating, or equivalent practices, to ensure that nonpoint source pollutant discharges do not alter natural water quality in the affected ASBS.

 c. The Waterfront Plan shall include Management Practices to address public education and outreach to ensure that the public is adequately informed that waste discharges to the affected ASBS are prohibited or limited by special conditions in these Special Protections. The management practices shall include appropriate signage, or similar measures, to inform the public of the ASBS restrictions and to identify the ASBS boundaries.

 d. The Waterfront Plan shall include Management Practices to address the prohibition against trash discharges to ASBS. The Management Practices shall include the provision of adequate trash receptacles for marine recreation areas, including parking areas, launch ramps, and docks. The plan shall also include appropriate Management Practices to ensure that the receptacles are
adequately maintained and secured in order to prevent trash discharges into the ASBS. Appropriate Management Practices include covering the trash receptacles to prevent trash from being windblown, staking or securing the trash receptacles so they don’t tip over, and periodically emptying the receptacles to prevent overflow.

e. The Discharger shall submit its Waterfront Plan to the State Water Board Executive Director by September 20, 2012. The Waterfront Plan is subject to approval by the State Water Board Executive Director. The plan must be fully implemented within by September 20, 2013.

2. The discharge of chlorine, soaps, petroleum, other chemical contaminants, trash, fish offal, or human sewage to ASBS is prohibited. Sinks and fish cleaning stations are point source discharges of wastes and are prohibited from discharging into ASBS. Anthropogenic accumulations of discarded fouling organisms on the sea floor must be minimized.

3. Limited-term activities, such as the repair, renovation, or maintenance of waterfront facilities, including, but not limited to, piers, docks, moorings, and breakwaters, are authorized only in accordance with Chapter III.E.2 of the Ocean Plan.

4. If the Discharger anticipates that the Discharger will fail to fully implement the approved Waterfront Plan within the 18 month deadline, the Discharger shall submit a technical report as soon as practicable to the Executive Director. The technical report shall contain reasons for failing to meet the deadline and propose a revised schedule to fully implement the plan.

5. The State Water Board may, for good cause, authorize additional time to comply with the Waterfront Plan. Good cause means a physical impossibility or lack of funding.

If a Discharger claims physical impossibility, it shall notify the Board in writing within thirty (30) days of the date that the Discharger first knew of the event or circumstance that caused or would cause it to fail to meet the deadline in Section F.1.e above. The notice shall describe the reason for the noncompliance or anticipated noncompliance and specifically refer to this Section of this Attachment. It shall describe the anticipated length of time the delay in compliance may persist, the cause or causes of the delay as well as measures to minimize the impact of the delay on water quality, the measures taken or to be taken by the Discharger to prevent or minimize the delay, the schedule by which the measures will be implemented, and the anticipated date of compliance. The Discharger shall adopt all reasonable measures to avoid and minimize such delays and their impact on water quality. The Discharger may request an extension of time for compliance based on lack of funding. The request for an extension shall require:
a. a demonstration of significant hardship by showing that the Discharger has made timely and complete applications for all available bond and grant funding, and either no bond or grant funding is available, or bond and/or grant funding is inadequate.

b. for governmental agencies, a demonstration and documentation of a good faith effort to acquire funding through that agency’s budgetary process, and a demonstration that funding was unavailable or inadequate.

G. Sampling and Analysis Requirements

1. Monitoring is mandatory for all ASBS Dischargers to assure compliance with the Ocean Plan. Monitoring requirements include both: (1) Core Discharge Monitoring and (2) Ocean Receiving Water Monitoring (see Sections H. and I. below). The State and Regional Water Boards must approve sampling site locations and any adjustments to the monitoring programs. All ocean receiving water and reference area monitoring must be comparable with the Water Boards’ Surface Water Ambient Monitoring Program (SWAMP).

2. Safety concerns: Sample locations and sampling periods must be determined considering safety issues. Sampling may be postponed upon notifying the Executive Director that hazardous conditions prevail.

3. Analytical Chemistry Methods: All constituents must be analyzed using the lowest minimum detection limits comparable to the Ocean Plan water quality objectives. For metal analysis, all samples, including storm water effluent, reference samples, and ocean receiving water samples, must be analyzed by the approved analytical method with the lowest minimum detection limits (currently Inductively Coupled Plasma/Mass Spectrometry) described in the Ocean Plan.

H. Core Discharge Monitoring Program

1. General sampling requirements for timing and storm size:

 Runoff must be collected during a storm event that is greater than 0.1 inch and generates runoff, and at least 72 hours from the previously measurable storm event. Runoff samples shall be collected during the same storm and at approximately the same time when post-storm receiving water is sampled, and analyzed for the same constituents as receiving water and reference site samples as described in Section I. below.

2. Runoff flow measurements

 a. For industrial storm water outfalls in existence as of December 31, 2007, 18 inches (457mm) or greater in diameter/width (including multiple outfall pipes in combination having a width of 18 inches, runoff flows must be
measured or calculated, using a method acceptable to and approved by the Executive Director.

b. This will be reported annually for each precipitation season to the Executive Director.

3. Runoff samples – storm events

a. For outfalls equal to or greater than 18 inches (0.46m) in diameter or width:
 1) samples of storm water runoff shall be collected during the same storm as receiving water samples and analyzed for oil and grease, total suspended solids, and, if within the range of the southern sea otter, indicator bacteria or some other measure of fecal contamination; and
 2) samples of storm water runoff shall be collected and analyzed for critical life stage chronic toxicity (one invertebrate or algal species) at least once during each storm season when receiving water is sampled in the ASBS.

b. For outfalls equal to or greater than 36 inches (0.91m) in diameter or width:
 1) samples of storm water runoff shall be collected during the same storm as receiving water samples and analyzed for oil and grease, total suspended solids, and, if within the range of the southern sea otter, indicator bacteria or some other measure of fecal contamination; and
 2) samples of storm water runoff shall be further collected during the same storm as receiving water samples and analyzed for Ocean Plan Table B metals (provided at the end of this Attachment) for protection of marine life, Ocean Plan polynuclear aromatic hydrocarbons (PAHs), current use pesticides (pyrethroids and OP pesticides), and nutrients (ammonia, nitrate and phosphates); and
 3) samples of storm water runoff shall be collected and analyzed for critical life stage chronic toxicity (one invertebrate or algal species) at least once during each storm season when receiving water is sampled in the ASBS.
 4) if an ASBS Discharger has no outfall greater than 36 inches, then storm water runoff from the applicant’s largest outfall shall be further collected during the same storm as receiving water samples and analyzed for Ocean Plan Table B metals (provided at the end of this Attachment) for protection of marine life, Ocean Plan polynuclear aromatic hydrocarbons (PAHs), current use pesticides (pyrethroids and OP pesticides), and nutrients (ammonia, nitrate and phosphates).

c. For an applicant not participating in a regional integrated monitoring program [see below in Section I.3.] in addition to the sampling requirements in Section H.3.a. and b. above, a minimum of the two largest outfalls or 20 percent of the
larger outfalls, whichever is greater, shall be sampled (flow weighted composite samples) at least three times annually during wet weather (storm event) and analyzed for all Ocean Plan Table A constituents, Table B constituents (Table A and B constituents are provided at the end of this Attachment) for marine aquatic life protection (except for toxicity, only chronic toxicity for three species shall be required), DDT, PCBs, Ocean Plan PAHs, OP pesticides, pyrethroids, nitrates, phosphates, and Ocean Plan indicator bacteria. For parties discharging to ASBS in more than one Regional Water Board region, at a minimum, one (the largest) such discharge shall be sampled annually in each Region.

d. The Executive Director may reduce or suspend core monitoring once the storm runoff is fully characterized. This determination may be made at any point after the discharge is fully characterized, but is best made after the monitoring results from the first permit cycle are assessed.

I. Ocean Receiving Water and Reference Area Monitoring Program

1. In addition to performing the Core Discharge Monitoring Program in Section H. above, all ASBS Dischargers must perform ocean receiving water monitoring. In order to fulfill the requirements for monitoring the physical, chemical, and biological characteristics of the ocean receiving waters within their ASBS, ASBS Dischargers may choose either (1) an individual monitoring program, or (2) participation in a regional integrated monitoring program.

2. Individual Monitoring Program: The requirements listed below are for those ASBS Dischargers who elect to perform an individual monitoring program to fulfill the requirements for monitoring the physical, chemical, and biological characteristics of the ocean receiving waters within the affected ASBS. In addition to Core Discharge Monitoring, the following additional monitoring requirements shall be met:

a. Three times annually, during wet weather (storm events), the receiving water at the point of discharge from the outfalls described in Section H.3. above shall be sampled and analyzed for Ocean Plan Table A constituents, Table B constituents (Table A and B constituents are provided at the end if this Attachment) for marine aquatic life, DDT, PCBs, Ocean Plan PAHs, OP pesticides, pyrethroids, nitrates, phosphates, salinity, chronic toxicity (three species), and Ocean Plan indicator bacteria.

 The sample location for the ocean receiving water shall be in the surf zone at the point of discharges; this must be at the same location where storm water runoff is sampled. Receiving water shall be sampled prior to (pre-storm), and during (or immediately after) the same storm (post-storm). Post-storm sampling shall be during the same storm and at approximately the same time as when the runoff is sampled. Reference water quality shall also be
sampled three times annually and analyzed for the same constituents pre-storm and post-storm, during the same storm seasons when receiving water is sampled. Reference stations will be determined by the State Water Board’s Division of Water Quality and the applicable Regional Water Board(s).

b. Sediment sampling shall occur at least three times during every five (5) year period. The subtidal sediment (sand or finer, if present) at the discharge shall be sampled and analyzed for Ocean Plan Table B constituents (provided at the end of this Attachment) for marine aquatic life, DDT, PCBs, PAHs, pyrethroids, and OP pesticides. For sediment toxicity testing, only an acute toxicity test using the amphipod Eohaustorius estuarius must be performed.

c. A quantitative survey of intertidal benthic marine life shall be performed at the discharge and at a reference site. The survey shall be performed at least once every five (5) year period. The survey design is subject to approval by the Regional Water Board and the State Water Board’s Division of Water Quality. The results of the survey shall be completed and submitted to the State Water Board and Regional Water Board at least six months prior to the end of the permit cycle.

d. Once during each five (5) year period, a bioaccumulation study shall be conducted to determine the concentrations of metals and synthetic organic pollutants at representative discharge sites and at representative reference sites. The study design is subject to approval by the Regional Water Board and the State Water Board’s Division of Water Quality. The bioaccumulation study may include California mussels (Mytilus californianus) and/or sand crabs (Emerita analoga or Blepharipoda occidentalis). Based on the study results, the Regional Water Board and the State Water Board’s Division of Water Quality, may adjust the study design in subsequent permits, or add or modify additional test organisms (such as shore crabs or fish), or modify the study design appropriate for the area and best available sensitive measures of contaminant exposure.

e. Marine Debris: Representative quantitative observations for trash by type and source shall be performed along the coast of the ASBS within the influence of the ASBS Discharger’s outfalls. The design, including locations and frequency, of the marine debris observations is subject to approval by the Regional Water Board and State Water Board’s Division of Water Quality.

f. The monitoring requirements of the Individual Monitoring Program in this Section are minimum requirements. After a minimum of one (1) year of continuous water quality monitoring of the discharges and ocean receiving waters, the Executive Director of the State Water Board may require additional monitoring, or adjust, reduce or suspend receiving water and reference station monitoring. This determination may be made at any point
after the discharge and receiving water is fully characterized, but is best made after the monitoring results from the first permit cycle are assessed.

3. Regional Integrated Monitoring Program: ASBS Dischargers may elect to participate in a regional integrated monitoring program, in lieu of an individual monitoring program, to fulfill the requirements for monitoring the physical, chemical, and biological characteristics of the ocean receiving waters within their ASBS. This regional approach shall characterize natural water quality, pre- and post-storm, in ocean reference areas near the mouths of identified open space watersheds and the effects of the discharges on natural water quality (physical, chemical, and toxicity) in the ASBS receiving waters, and should include benthic marine aquatic life and bioaccumulation components. The design of the ASBS stratum of a regional integrated monitoring program may deviate from the otherwise prescribed individual monitoring approach (in Section I.2.) if approved by the State Water Board’s Division of Water Quality and the Regional Water Boards.

a. Ocean reference areas shall be located at the drainages of flowing watersheds with minimal development (in no instance more than 10% development), and shall not be located in CWA Section 303(d) listed waterbodies or have tributaries that are 303(d) listed. Reference areas shall be free of wastewater discharges and anthropogenic non-storm water runoff. A minimum of low threat storm runoff discharges (e.g. stream highway overpasses and campgrounds) may be allowed on a case-by-case basis. Reference areas shall be located in the same region as the ASBS receiving water monitoring occurs. The reference areas for each Region are subject to approval by the participants in the regional integrated monitoring program, the State Water Board’s Division of Water Quality and the applicable Regional Water Board(s). A minimum of three ocean reference water samples must be collected from each station, each from a separate storm during the same storm season that receiving water is sampled. A minimum of one reference location shall be sampled for each ASBS receiving water site sampled per responsible party. For parties discharging to ASBS in more than one Regional Water Board region, at a minimum, one reference station and one receiving water station shall be sampled in each region.

b. ASBS ocean receiving water must be sampled in the surf zone at the location where the runoff makes contact with ocean water (i.e. at “point zero”). Ocean receiving water stations must be representative of worst-case discharge conditions (i.e. co-located at a large drain greater than 36 inches, or if drains greater than 36 inches are not present in the ASBS then the largest drain greater than18 inches.) Ocean receiving water stations are subject to approval by the participants in the regional monitoring program and the State Water Board’s Division of Water Quality and the applicable Regional Water Board(s). A minimum of three ocean receiving water samples must be collected during each storm season from each station, each from a separate
storm. A minimum of one receiving water location shall be sampled in each ASBS per responsible party in that ASBS. For parties discharging to ASBS in more than one Regional Water Board region, at a minimum, one reference station and one receiving water station shall be sampled in each region.

c. Reference and receiving water sampling shall commence during the first full storm season following the adoption of these special conditions, and post-storm samples shall be collected during the same storm event when storm water runoff is sampled. Sampling shall occur in a minimum of two storm seasons. For those ASBS Dischargers that have already participated in the Southern California Bight 2008 ASBS regional monitoring effort, sampling may be limited to only one storm season.

d. Receiving water and reference samples shall be analyzed for the same constituents as storm water runoff samples. At a minimum, constituents to be sampled and analyzed in reference and discharge receiving waters must include oil and grease, total suspended solids, Ocean Plan Table B metals (provided at the end of this Attachment) for protection of marine life, Ocean Plan PAHs, pyrethroids, OP pesticides, ammonia, nitrate, phosphates, and critical life stage chronic toxicity for three species. In addition, within the range of the southern sea otter, indicator bacteria or some other measure of fecal contamination shall be analyzed.
Compare receiving water post-storm sample concentration to the 85% threshold of reference sample concentrations

\[\text{Is post-storm concentration} \geq \text{85\% threshold?} \]

\[\text{no} \]

\[\text{Compliance with natural water quality} \]

\[\text{yes} \]

Compare receiving water post-storm to pre-storm sample concentration

\[\text{Is post storm receiving water sample} \geq \text{pre-storm concentration?} \]

\[\text{no} \]

\[\text{Receiving Water sample similar to local background - No Action} \]

\[\text{yes} \]

Resample receiving water pre- and post-storm (during the next feasible storm event) and analyze per Water Board approval

\[\text{Is post storm resample(s) concentration} \geq \text{85\% threshold?} \]

\[\text{no} \]

\[\text{Compliance with natural water quality} \]

\[\text{yes} \]

Is post storm receiving water sample > pre-storm concentration?

\[\text{Receiving Water sample similar to local background - No Action} \]

\[\text{yes} \]

Exceedance of natural water quality*

* When an exceedance of natural water quality occurs, the Discharger must comply with Section D. Note, when sampling data is available, end-of-pipe effluent concentrations will be considered by the Water Boards in making this determination.
ASBS Monitoring

TABLE A
Monitoring Constituent List
(excerpted from California Ocean Plan dated 2009)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease and Oil</td>
<td>mg/L</td>
</tr>
<tr>
<td>Suspended Solids</td>
<td>Mg/L</td>
</tr>
<tr>
<td>Settleable Solids</td>
<td>mL/L</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
</tr>
<tr>
<td>PH</td>
<td></td>
</tr>
</tbody>
</table>

TABLE B
Monitoring Constituent List
(Excerpted from California Ocean Plan dated 2009)

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>µg/L</td>
</tr>
<tr>
<td>Cadmium</td>
<td>µg/L</td>
</tr>
<tr>
<td>Chromium</td>
<td>µg/L</td>
</tr>
<tr>
<td>Copper</td>
<td>µg/L</td>
</tr>
<tr>
<td>Lead</td>
<td>µg/L</td>
</tr>
<tr>
<td>Mercury</td>
<td>µg/L</td>
</tr>
<tr>
<td>Nickel</td>
<td>µg/L</td>
</tr>
<tr>
<td>Selenium</td>
<td>µg/L</td>
</tr>
<tr>
<td>Silver</td>
<td>µg/L</td>
</tr>
<tr>
<td>Zinc</td>
<td>µg/L</td>
</tr>
<tr>
<td>Cyanide</td>
<td>µg/L</td>
</tr>
<tr>
<td>Total Chlorine Residual</td>
<td>µg/L</td>
</tr>
<tr>
<td>Ammonia (as N)</td>
<td>µg/L</td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>TUa</td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>TUc</td>
</tr>
<tr>
<td>Phenolic Compounds (non-chlorinated)</td>
<td>µg/L</td>
</tr>
<tr>
<td>Chlorinated Phenolics</td>
<td>µg/L</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>µg/L</td>
</tr>
<tr>
<td>Endrin</td>
<td>µg/L</td>
</tr>
<tr>
<td>HCH</td>
<td>µg/L</td>
</tr>
</tbody>
</table>

Analytical Chemistry Methods: All constituents shall be analyzed using the lowest minimum detection limits comparable to the Ocean Plan water quality objectives. For metal analysis, all samples, including storm water effluent, reference samples, and ocean receiving water samples, shall be analyzed by the approved analytical method with the lowest minimum detection limits (currently Inductively Coupled Plasma/Mass Spectrometry) described in the Ocean Plan.
ATTACHMENT H

SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES
ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

1. Identify the sampling parameters required to be tested and the number of storm water discharge points that will be sampled. Request the analytical testing laboratory to provide the appropriate number and type of sample containers, sample container labels, blank chain of custody forms, and sample preservation instructions.

2. Determine how samples will be transported to the laboratory. The testing laboratory should receive samples within 48 hours of the physical sampling (unless otherwise required by the laboratory). The Discharger may either deliver the samples to the laboratory, arrange for the laboratory to pick up the samples, or overnight ship the samples to the laboratory. All sample analysis shall be done in accordance with 40 Code of Federal Regulations part 136. Samples for pH have a holding time of 15 minutes.¹

3. Qualified Combined Samples shall be combined by the laboratory and not by the Discharger. Sample bottles must be appropriately labeled to instruct the laboratory on which samples to combine.

4. Unless the Discharger can provide flow weighted information, all combined samples shall be volume weighted.

5. For grab samples, use only the sample containers provided by the laboratory to collect and store samples. Use of any other type of containers may contaminate samples.

6. For automatic samplers that are not compatible with bottles provided by the laboratory, the Discharger is required to send the sample container included with the automatic sampler to the laboratory for analysis.

¹ 40 C.F.R. section 136.3, Table II - Required Containers, Preservation Techniques, and Holding Times.
7. The Discharger can only use automatic sampling device to sample parameters that the device is designed to. For pH, Dischargers can only use automatic sampling devices with the ability to read pH within 15 minutes of sample collection.

8. The Discharger is prohibited from using an automatic sampling device for Oil and Grease, unless the automatic sampling device is specifically designed to sample for Oil and Grease.

9. To prevent contamination, do not touch inside of sample container or cap or put anything into the sample containers before collecting storm water samples.

10. Do not overfill sample containers. Overfilling can change the analytical results.

11. Tightly screw on the cap of each sample container without stripping the threads of the cap.

12. Complete and attach a label for each sample container. The label shall identify the date and time of sample collection, the person taking the sample, and the sample collection location or discharge point. The label should also identify any sample containers that have been preserved.

13. Carefully pack sample containers into an ice chest or refrigerator to prevent breakage and maintain temperature during shipment. Remember to place frozen ice packs into shipping containers. Samples should be kept as close to 4 degrees Celsius (39 degrees Fahrenheit) as possible until arriving to the laboratory. Do not freeze samples.

14. Complete a Chain of Custody form for each set of samples. The Chain of Custody form shall include the Discharger’s name, address, and phone number, identification of each sample container and sample collection point, person collecting the samples, the date and time each sample container was filled, and the analysis that is required for each sample container.

15. Upon shipping/delivering the sample containers, obtain both the signatures of the persons relinquishing and receiving the sample containers.

16. Dischargers shall designate and train personnel to collect, maintain, and ship samples in accordance with the sample protocols and laboratory practices.

17. Refer to Table 1 in the General Permit for test methods, detection limits, and reporting units.

18. All sampling and sample preservation shall be in accordance with 40 Code of Federal Regulations part 136 and the current edition of “Standard Methods for
SAMPLE COLLECTION AND HANDLING INSTRUCTIONS

the Examination of Water and Wastewater” (American Public Health Association). All monitoring instruments and equipment (including Discharger field instruments for measuring pH or specific conductance if identified as an additional sampling parameter) shall be calibrated and maintained in accordance with manufacturers’ specifications to ensure accurate measurements. All laboratory analyses shall be conducted according to approved test procedures under 40 Code of Federal Regulations part 136, unless other test procedures have been specified by the Regional Water Quality Control Board. All metals shall be reported as total metals. Dischargers may conduct their own field analysis of pH (or specific conductance if identified as an additional sampling parameter) if the Discharger has sufficient capability (qualified and trained employees, properly calibrated and maintained field instruments, etc.) to adequately perform the field analysis. With the exception of field analysis conducted by Dischargers for pH (or specific conductance if identified as an additional sampling parameter), all analyses shall be sent to and conducted at a laboratory certified for such analyses by the California Department of Public Health. Dischargers are required to report to the Water Board any sampling data collected more frequently than required in this General Permit (Section XXI.J.2)
APPENDIX 1

STORM WATER POLLUTION PREVENTION PLAN (SWPPP) CHECKLIST

NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES)

GENERAL PERMIT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES (GENERAL PERMIT)

FACILITY NAME:

Waste Discharge Identification (WDID) #:

<table>
<thead>
<tr>
<th>FACILITY CONTACT</th>
<th>Consultant/Qualified Industrial Storm Water Practitioner (QISP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>Street Address</td>
<td></td>
</tr>
<tr>
<td>City, State</td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
</tr>
</tbody>
</table>

SWPPP (General Permit Section) | Not Applicable | SWPPP Page # or Reference Location | Date Implemented or Last Revised |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed Certification (Section II.A)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution Prevention Team (Section X.D.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existing Facility Plans (Section X.D.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Site Map(s) (Section X.E)

Facility boundaries (Section X.E.3.a)			
Drainage areas (Section X.E.3.a)			
Direction of flow (Section X.E.3.a)			
On-facility water bodies (Section X.E.3.a)			
STORM WATER POLLUTION PREVENTION PLAN (SWPPP) CHECKLIST

<table>
<thead>
<tr>
<th>SWPPP (General Permit Section)</th>
<th>Not Applicable</th>
<th>SWPPP Page # or Reference Location</th>
<th>Date Implemented or Last Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areas of soil erosion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nearby water bodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal storm drain inlets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Points of discharge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Locations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural control measures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impervious areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location of Directly Exposed Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locations of significant spills and leaks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas of Industrial Activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas of industrial activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage areas/storage tanks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping and receiving areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fueling areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle and equipment storage/maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material handling/processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste treatment/disposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust or particulate generation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning and material reuse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STORM WATER POLLUTION PREVENTION PLAN (SWPPP) CHECKLIST

<table>
<thead>
<tr>
<th>SWPPP (General Permit Section)</th>
<th>Not Applicable</th>
<th>SWPPP Page # or Reference Location</th>
<th>Date Implemented or Last Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other areas of industrial activities (Section X.E.3.f)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

List of Industrial Materials (Section X.F)

<table>
<thead>
<tr>
<th>Storage location</th>
<th>Quantity</th>
<th>Frequency</th>
<th>Receiving and shipping location</th>
<th>Quantity</th>
<th>Frequency</th>
<th>Handling location</th>
<th>Quantity</th>
<th>Frequency</th>
</tr>
</thead>
</table>

Potential Pollution Sources (Section X.G)

Description of Potential Pollution Sources (Section X.G.1)

- Industrial processes (Section X.G.1.a)
- Material handling and storage areas (Section X.G.1.b)
- Dust & particulate generating activities (Section X.G.1.c)
- Significant spills and leaks (Section X.G.1.d)
- Non-storm water discharges (Section X.G.1.e)
- Erodible surfaces (Section X.G.1.f)

Assessment of Potential Pollutant Sources (Section X.G.2)

- Narrative assessment of likely sources of pollutants (Section X.G.2.a)
- Narrative assessment of likely pollutants present in storm water discharges (Section X.G.2.a)
- Identification of additional BMPs (Section X.G.2.b)
<table>
<thead>
<tr>
<th>SWPPP (General Permit Section)</th>
<th>Not Applicable</th>
<th>SWPPP Page # or Reference Location</th>
<th>Date Implemented or Last Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification of drainage areas with no exposure (Section X.G.2.c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification of additional parameters (Section X.G.2.d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm Water Best Management Practices (Section X.H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum BMPs (Section X.H.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good housekeeping (Section X.H.1.a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preventative maintenance (Section X.H.1.b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spill response (Section X.H.1.c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material handling and waste management (Section X.H.1.d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erosion and sediment controls (Section X.H.1.e)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employee training program (Section X.H.1.f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality assurance and record keeping (Section X.H.1.g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced BMPs (Section X.H.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement advanced BMPs at the facility (Section X.H.2.a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure Minimization BMPs (Section X.H.2.b.i)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm Water containment and discharge reduction BMPS (Section X.H.2.b.ii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Control BMPs (Section X.H.2.b.iii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other advance BMPs (Section X.H.2.b.iv)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Suspension of Activities (Section X.H.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMPs necessary for stabilization of the facility (Section X.H.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWPPP (General Permit Section)</td>
<td>Not Applicable</td>
<td>SWPPP Page # or Reference Location</td>
<td>Date Implemented or Last Revised</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>BMP Descriptions (Section X.H.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollutant that a BMP reduces or prevents (Section X.H.4.a.i)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of BMP implementation (Section X.H.4.a.ii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location of BMP (Section X.H.4.a.iii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Person implementing BMP (Section X.H.4.a.iv)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedures/maintenance/instructions for BMP implementation (Section X.H.4.a.v)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment and tools for BMP implementation (Section X.H.4.a.vi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMPs needing more frequent inspections (Section X.H.4.a.vii)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum BMP/applicable advanced BMPs not implemented at the facility (Section X.H.4.b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMPs implemented in lieu of minimum or applicable advanced BMPs (Section X.H.4.c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP Summary Table (Section X.H.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring Implementation Plan (Section X.I)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Team members assisting in developing the MIP (Section X.I.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary of visual observation procedures, locations, and details (Section X.I.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Justifications if applicable for: Alternative discharge locations, Representative Sampling Reduction or, Qualified Combined Samples (Section X.I.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedures for field instrument calibration (Section X.I.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Storm Water Pollution Prevention Plan (SWPPP) Checklist

<table>
<thead>
<tr>
<th>SWPPP (General Permit Section)</th>
<th>Not Applicable</th>
<th>SWPPP Page # or Reference Location</th>
<th>Date Implemented or Last Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example of Chain of Custody (Section X.I.5)</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Annual Comprehensive Facility Compliance Evaluation (Section XV)

- Review of all visual inspection and monitoring records and sampling and analysis results conducted during the previous reporting year (Section XV.A)
- Visual inspection of all areas of industrial activity and associated potential pollutant sources (Section XV.B)
- Visual inspection of all drainage areas previously identified as having no-exposure to industrial activities and materials in accordance with the definitions in Section XVII (Section XV.C)
- Visual inspection of equipment needed to implement the BMPs (Section XV.D)
- Visual inspection of any structural and/or treatment control BMPs (Section XV.E)
- Review and assessment of all BMPs for each area of industrial activity and associated potential pollutant sources (Section XV.F)
- Assessment of other factors needed to complete the information described in Section XVI.B (Section XV.G)
APPENDIX 2

INSTRUCTIONS FOR NO EXPOSURE CERTIFICATION (NEC)

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES
(GENERAL PERMIT)

This Attachment provides general guidance instructions and guidance for obtaining NEC coverage. The actual NEC requirements are primarily contained in Section XVII of this General Permit.

A. INSTRUCTIONS:

Who May File for NEC Coverage

Sections 301 and 402(p) of the Clean Water Act (CWA), and Sections 1311 and 1342(p) of 33 United States Code prohibit the discharge of storm water associated with industrial activity to waters of the United States without a National Pollutant Discharge Elimination System (NPDES) permit. However, NPDES permit coverage is “conditionally excluded” for discharges of storm water associated with industrial activities (industrial storm water discharges) if the Discharger can certify that a condition of “No Exposure” exists at the industrial facility. A condition of “No Exposure” means that a Discharger’s industrial activities and materials are not exposed to storm water. Industrial storm water discharges from construction and land disturbance activities are ineligible for the NEC coverage. Dischargers who file valid NECs in accordance with these instructions are not required to implement Best Available Technology Economically Achievable /Best Conventional Pollutant Control Technology and comply with the Storm Water Pollution Prevention Plan (SWPPP) and monitoring requirements of this General Permit.

Obtaining and Maintaining NEC Coverage

A Discharger must electronically certify and submit NEC Permit Registration Documents (PRDs) via State Water Resources Control Board’s (State Water Board’s) Storm Water Multi-Application and Report Tracking System (SMARTS) to obtain NEC coverage. This conditional exclusion does not become effective until the PRDs are submitted and the annual fee is paid. Upon receipt of the annual fee, the Discharger will electronically receive an NEC acceptance notification via SMARTS, which will include a Waste Discharge Identification (WDID) number. A Discharger must maintain a condition of “No Exposure” at the facility for the conditional exclusion to remain applicable. The Discharger must annually electronically re-certify the NEC via SMARTS to confirm that the conditions of “no exposure” are being maintained. If conditions change resulting in the exposure of materials and activities to storm water, the Discharger must electronically certify and submit PRDs via SMARTS for Notice of Intent (NOI) coverage under the General Permit for Storm Water Discharges Associated with Industrial Activities (General Permit).

Fees

First time NEC coverage PRDs and the annual re-certification require a fee. Fees may be changed by State Water Board regulation, independent of this General Permit.

How to Prepare and Submit PRDs for NEC Coverage

A Discharger must electronically certify and submit PRDs for NEC coverage in accordance with the instructions provided at the State Water Board web site for SMARTS:

https://smarts.waterboards.ca.gov/smarts/faces/SwSmartsLogin.jsp

A Discharger with multiple facilities that satisfy the conditions of “No Exposure” must certify and submit PRDs for each facility. The Discharger is required to inspect and evaluate each individual facility to determine the condition of No-Exposure. The Discharger must retain an electronic or paper copy of the NEC coverage acceptance notification for their records.

The following information is required in the PRDs:

Discharger Information

1. The legal business name of the business entity, public organization, or any other entity that operates the facility described in the certification. The name of the operator may or may not be the same as the name of the facility. The operator is the legal entity that controls the facility operations, not the plant or site manager.

2. The mailing address of the facility operator, including the city, state, and zip code.

3. The facility operator contact person, telephone number and e-mail address.
INSTRUCTIONS FOR NO EXPOSURE CERTIFICATION (NEC)

Facility Information

4. The legal business name of the facility.

5. The total acreage of the facility associated with industrial activity. (Facility size in acres is calculated by taking the square feet and dividing by 43,560.)

6. The complete physical street address (e.g. the street address used for express deliveries), including the city, State, and zip code. Do not use a P.O. Box number. If a physical street address does not exist, describe the location or provide the latitude and longitude of a point within the facility boundary. Latitude and longitude are available from United States Geological Survey quadrangle or topographic maps, or may be found using a mapping site on the internet.

7. The facility contact person, telephone number, and e-mail address.

8. The 4-digit Standard Industrial Classification (SIC) code that represents the facility primary industrial activity. Provide a brief description of the primary industrial activity. If applicable, enter other significant SIC codes and descriptions. To obtain these codes, see the 1987 SIC Manual or the Occupational Health and Safety Administration’s site:

http://www.osha.gov/pls/imis/sicsearch.html

9. If the facility is currently covered under the General Permit, include the WDID number. The WDID number will be used at a later date to terminate the facility’s coverage under the General Permit as necessary.

Facility Mailing or Billing Address

Completion of this item is required the facility mailing address or billing address differs from the physical facility address provided above. The Discharger must indicate which address the annual fee invoice must be sent to if the State Water Board is unable to transmit the invoice electronically.

Site Maps

Site maps must be prepared and submitted in accordance with the requirements in Section X.E of this General Permit.

NEC Checklist

The Discharger must evaluate the eleven major areas that storm water exposure may occur, per the listing at the end of this appendix. The Discharger must be able to certify that none of these major areas have potential for exposure. If the Discharger cannot certify that every one of the eleven major areas do not have exposure, a potential for exposure exists at the facility and the facility is not eligible for NEC coverage. The Discharger must obtain (or continue) NOI coverage under this General Permit if the facility is not eligible for NEC coverage. After obtaining NOI coverage, the Discharger may implement facility modifications to eliminate the potential for a discharge of storm water exposed to industrial activity, and then change their NOI coverage to NEC coverage by certifying the conditions of “No Exposure” are met.

Certification

Federal and state statutes provide for severe penalties for Dischargers that submit false information on the PRDs. Dischargers shall certify and submit PRDs via SMARTS for NEC coverage in accordance with Electronic Signature and Certification Requirements in Section XXI.K of this General Permit.

B. GUIDANCE:

Contact your local Regional Water Quality Control Board (Regional Water Board) office with questions regarding this guidance.

1. Who is Eligible to Qualify for the No Exposure Certification (NEC) - Conditional Exclusion?

All industrial categories listed in Attachment A of this General Permit (excluding construction) are eligible to apply for the NEC coverage.

2. Limitations on Eligibility for NEC coverage

In addition to construction projects not being eligible, the following situations limit the applicability of NEC coverage:

a. NEC coverage is available on a facility-wide basis only, not for individual drainage areas or discharge locations. Generally, if any exposed industrial materials or activities exist, or have a potential to exist, anywhere at a facility, NEC coverage is not applicable to the facility. If the Regional Water Board determines that a facility does have exposure or the facility’s storm water discharges have a reasonable potential to cause or contribute to an exceedance of applicable water quality objectives/standards, the Regional Water Board can deny NEC coverage.

b. If changes at a facility result in potential exposure of industrial activities or materials, the facility is no longer eligible for NEC coverage. Dischargers
shall register for NOI coverage under this General Permit prior to a planned facility change that will cause exposure, or within seven (7) calendar days after unplanned exposure occurs. If an unplanned exposure occurs due to an emergency response or one-time event that is unlikely to re-occur, a Discharger may contact the Regional Water Board to discuss whether the requirement to obtain NOI coverage can be waived. Unless the Discharger receives a written waiver from the Regional Water Board, the Discharger shall electronically certify and submit PRDs to obtain NOI coverage.

c. Current contamination resulting from historic industrial practices at the facility (e.g., soil contamination, groundwater contamination, etc.) represents a condition of exposure to waters of the United State; therefore a facility with historic contamination is not eligible for NEC coverage.

3. What is the Definition of No Exposure?

a. No Exposure means all industrial materials and activities are protected by a storm-resistant shelter to prevent exposure to rain, snow, snowmelt and/or runoff.

b. Industrial materials and activities include, but are not limited to, material-handling equipment or activities; industrial machinery; raw materials, intermediate products, by-products, and final products; or waste products.

c. Material handling activities include storage, loading and unloading, transport, or conveyance of any raw material, intermediate product, by-product, final product, or waste product.

d. Final products intended to be used outdoors (e.g., automobiles) typically pose little risk of polluting storm water since not typically contaminated with pollutants that become mobilized by contact with storm water. Final products are exempt from the requirement for protection by a storm-resistant shelter to qualify for no exposure. Similarly, containers, racks, and other transport platforms (e.g., wooden pallets) used for the storage or conveyance of final products may also be stored outside if pollutant-free or pollutants do not mobilize via contact with storm water.

e. Storm-resistant shelters include: (1) completely roofed and walled buildings or structures, (2) structures with only a top cover (no side coverings) supported by permanent supports, provided material within the structure is not subject to wind dispersion (sawdust, powders, etc.) or being tracked out of the facility, and is not a source of pollutants in the industrial storm water discharges.

4. Industrial Materials/Activities Not Requiring a Storm-Resistant Shelter

The intent of the “No Exposure” exclusion is to maintain a condition of permanent “No Exposure”. A storm-resistant shelter is not required for the following industrial materials and activities:

a. Drums, Barrels, Tanks, and Similar Containers that are sealed (“sealed” means banded or otherwise secured and without operational taps or valves), are not exposed provided those containers are not deteriorated, do not contain residual materials on the outside surfaces, and do not leak. Drums, barrels, etc., that are not opened while outdoors, or are not deteriorated or leaking, and that do not pose a risk of contaminating storm water runoff. Consider the following when making a “No Exposure” determination:

i. Materials shall not be added or withdrawn to/from containers while outdoors

ii. Simply moving containers while outside does not create exposure unless exposure occurs when pollutants are “tracked out” by the container handling equipment or vehicles.

iii. All outdoor containers shall be inspected to ensure they are not open, deteriorated, or leaking. When an outdoor container is observed as opened, deteriorated, or leaking, the container must immediately be closed, replaced, or sheltered. Frequent detection of open, deteriorated, or leaking containers, or failure to immediately close, replace, or shelter opened, deteriorated or leaking containers will cause a condition of exposure.

iv. Containers, racks, and other transport platforms (e.g., wooden pallets) used with drums, barrels, etc., can be stored outside providing they are contaminant-free and in good repair.

b. Above Ground Storage Tanks (ASTs) In addition to generally being considered as not exposed, ASTs may also be exempt from the prohibition against adding or withdrawing material to/from external containers. ASTs typically use transfer valves to dispense materials that support facility operations (e.g., heating oil, propane, butane, chemical feedstock) or fuel for delivery vehicles (gasoline, diesel, compressed natural gas). For operational
INSTRUCTIONS FOR NO EXPOSURE CERTIFICATION (NEC)

ASTs to qualify for “No Exposure”, the following must be satisfied:

i. The tank(s) shall be physically separated from and not associated with vehicle maintenance operations.

ii. There shall be no leaks from piping, pumps, or other equipment that has the potential to come in contact with storm water.

iii. Wherever feasible, the tank(s) shall have secondary containment (e.g., an impervious dike, berm or concrete retaining structure) to prevent runoff in the event of a structural failure or leaking transfer valve. Note: any resulting unpermitted discharge is in violation of the CWA.

c. Lidded Dumpsters. Lidded dumpsters containing waste materials, providing the containers are completely covered and nothing can drain out holes in the bottom, spilled when loaded into the dumpster, or spilled in loading into a garbage truck. Industrial waste materials and trash that is stored uncovered is considered exposed.

d. Adequately maintained vehicles, such as trucks, automobiles, forklifts, trailers or other general-purpose vehicles found onsite - but not industrial machinery that are not leaking, are in good repair or are not otherwise a potential source of contaminants:

i. Vehicles passing between buildings may be exposed to storm water, however if the vehicles are adequately maintained, a condition of exposure may not exist. Similarly, non-leaking vehicles awaiting maintenance at vehicle maintenance facilities are not considered as potential exposure. However, vehicles that have been washed or rinsed that are not completely dry prior to outside exposure have the potential to cause a condition of exposure. Vehicles that track materials out of the facility are considered to be mobilizing pollutants. Vehicles that exit maintenance bays are also considered to cause exposure.

ii. The mere conveyance between buildings of materials / products that are otherwise not allowed to be stored outdoors, does not create a condition of exposure, provided the materials/products are adequately protected from storm water and do not have the potential to be released as a result of a leak or spill.

e. Final products built and intended for use outdoors (e.g., new cars), provided the final products have not deteriorated, are not contaminated, or are not otherwise potential sources of contaminants.

Types of final products not qualifying for a certification of “No Exposure”:

i. Products that may be mobilized in storm water discharges (e.g., rock salt).

ii. Products, which may, when exposed, oxidize, deteriorate, leak, or otherwise be a potential source of contaminants (e.g., junk cars, stockpiled train rails).

iii. “Final” products that are, in actuality, “intermediate” products. Intermediate products are those used in the composition of yet another product (i.e., sheet metal, tubing, and paint used in making tractors).

iv. Even if the intermediate product is “final” for a manufacturer and destined for incorporation in a “final product intended for use outdoors,” the product is not allowed to be exposed because they may be chemically treated or are insufficiently impervious to weathering.

f. Special Conditions for Construction Activities

Permanent, uninterrupted sheltering of industrial activities or materials may not always be possible during facility renovation or construction. When such circumstances exist, the Discharger is not required to obtain coverage under an NPDES permit as long as the following conditions are met:

i. Materials and activities are protected with temporary covers or shelters (i.e. tarpaulins);

ii. Temporary covers or shelters prevent the contact of storm water to materials and activities;

iii. Materials are subject to wind dispersion are not stored under temporary sheltering;

iv. Temporary shelters are only used when necessary during facility renovation or construction and until permanent storm-resistant shelters as described above are available; and,

v. Temporary shelters are only used for a single period of ninety days or less. (Facilities with construction and renovation projects that will need the use of temporary shelters beyond 90 days, or that will require multiple periods of ninety
INSTRUCTIONS FOR NO EXPOSURE CERTIFICATION (NEC)

5. Other Potential Sources of Contaminants

a. Particulate Emissions from Roof Stacks and/or Vents: Deposits of particles or residuals from roof stacks/vents that have the potential to be mobilized by storm water runoff are considered exposed.

b. Pollutants Potentially Mobilized by Wind Windblown materials cause a condition of exposure. Materials sheltered from precipitation are be deemed exposed if the materials has a potential to be mobilized by wind.

6. Certifying a Condition of “No Exposure”

To obtain the NEC coverage, the Discharger must electronically certify and submit PRDs via SMARTS that the facility meets the definition of “No Exposure” and pay an annual fee. The Discharger must submit PRDs for NEC coverage even if the Discharger was not previously required to file for NEC coverage under the previous General Permit. These PRDs include a checklist requiring the Discharger to evaluate eleven major areas to determine whether there is exposure of industrial activities and materials at the facility. To qualify for NEC coverage the Discharger must satisfy all the NEC coverage conditions in this General Permit and certify that there is “No Exposure”. The checklist: 1) aids the Discharger in determining if its facility is eligible for NEC coverage, and 2) furnishes the necessary documentation supporting relief from the General Permit’s requirement of NOI coverage. Additionally, Dischargers with NEC coverage are not required to develop and implement SWPPPs or comply with the monitoring requirements.

If a Discharger cannot certify that there is “No Exposure” at the facility, the Discharger must make appropriate changes at the facility to eliminate exposure prior to registering for future NEC coverage. Facility changes must remove all potential for pollutant exposure to storm water.

An annual inspection and evaluation, re-certification and fee are required thereafter.

7. Other NEC coverage Facts:

a. NEC coverage is only valid if the condition of “No Exposure” exists and is reasonably expected to continue to exist. Dischargers shall electronically certify and submit PRDs for NOI coverage when the condition of “No Exposure” is no longer expected to exist.

b. Dischargers must file PRDs for NEC coverage for each qualifying facility.

c. An NEC must be submitted for each separate facility qualifying for the “No Exposure” conditional exclusion.

d. An NEC is non-transferable. If a new operator takes over facility operations, the new operator shall electronically certify and submit PRDs and applicable fees for new NEC coverage via SMARTS prior to the operations transfer. NEC coverage cannot be transferred from one physical location to another regardless of ownership.

8. Operators May Be Required to Obtain NOI Coverage Based on the Protection Of Water Quality?

Operators who certified that their facilities qualify for NEC coverage may, nonetheless, be required by the Regional Water Board to obtain NOI coverage if the Regional Water Board determines that the facility’s discharge has the potential to cause or contribute to an exceedance of applicable water quality objectives/standards or determines that exposure exists at the facility. The Regional Water Board may request information and/or inspect the facility to assess potential water quality impacts and to determine if NOI coverage is required. The Discharger shall take appropriate actions to ensure compliance with the General Permit.

9. Steps to Obtain NEC coverage

This section will walk you through the process of obtaining NEC coverage.

Step 1: Determine if your facility is subject to this General Permit (refer to Attachment A of this General Permit). If yes, proceed to Step 2. If not, stop here.

If your facility is included in Attachment A and conducts industrial activities, you are required to either register for NOI coverage or NEC coverage.

Step 2: Determine if your regulated industrial activity meets the definition of “No Exposure” and qualifies for the exclusion from permitting. If yes, proceed to Step 3. If no, stop here and obtain NOI coverage. An
evaluation of the facility must be conducted by facility personnel familiar with the facility and its operations. Inspect all facility areas and potential pollutant sources to determine whether the facility satisfies the “No Exposure” conditions.

Step 3: Electronically certify and submit the PRDs for NEC coverage via SMARTS and mail the annual fee to the State Water Board at the following address:

SWRCB
Surface Water Permitting Section
PO Box 1977
Sacramento, CA 95812-1977

To maintain NEC coverage, the NEC must re-certify and pay a fee annually. This may only be done if the condition of “No Exposure” continues to exist at the facility.

Step 4: If requested, staff from the Water Boards, local Municipal Separate Storm Sewer System (MS4), or United States Environmental Protection Agency must be allowed to inspect your facility. All inspection reports will be made publicly available.

Step 5: Maintain a condition of “No Exposure”.

- NEC coverage is not a blanket exemption. Therefore, if facility physical or operational changes occur which cause exposure of industrial activities or materials to storm water, the Discharger must then immediately comply with all the requirements of this General Permit, including obtaining NOI coverage as applicable.

- To maintain the condition of “No Exposure”, the Discharger shall annually evaluate the facility to assure that the conditions of “No Exposure” still exist. More frequent evaluations may be necessary in circumstances when facility operations are rapidly changing.

- Failure to maintain the condition of “No Exposure” or otherwise obtain NOI coverage may lead to the unauthorized discharge of storm water associated with industrial activity to waters of the United States, resulting in penalties under the CWA and Water Code.

C. Frequently Asked Questions:

Q1. Who is eligible for NEC Coverage?

A. Any Discharger operating a facility described in Attachment A may register for NEC coverage if their facility has a condition of “No Exposure”.

Q2. How does an eligible Discharger file for NEC coverage and where is the annual fee sent?

A. The PRDs for NEC coverage shall be electronically certified and submitted in accordance with the instructions provided in SMARTS at the State Water Board website at: https://smarts.waterboards.ca.gov/smarts/faces/SwSmartsLogin.jsp. The fee is currently $242, but may be changed by regulation. Once NEC coverage is accepted, an invoice will be electronically sent to the Discharger. The annual fee and invoice shall be sent to:

State Water Resources Control Board
Division of Water Quality
Attention: Industrial Storm Water Unit
P.O. Box 1977
Sacramento, CA 95812-1977

Q3. If my facility’s storm water discharges are covered by an individual permit, can I file for NEC coverage?

A. Yes. Storm water discharges covered by an individual permit are eligible for NEC coverage if the conditions at the facility satisfy the definition of “No Exposure” and you obtain approval to terminate individual permit coverage from the local Regional Water Board prior to PRD submittal. Approval from the Regional Water Board is mandatory. Many individual permits, for example, contain numeric storm water effluent limitations (“antibacksliding” provisions may prevent these facilities from qualifying for the “No Exposure” conditional exclusion).

Q4. My facility was originally excluded from the Phase I regulations because it was classified as a "light industrial facility". The facility has never had any exposure to storm water runoff. Do I now need to certify that the facility meets the No Exposure Exclusion from NPDES Storm Water Permitting?

A. Yes. See answer provided to question number 9, “What is the exclusion "conditional" upon?”

Q5. Do I have to file a Notice of Termination (NOT) and a register for NEC coverage if my facility has NOI coverage and qualifies for NEC coverage?

A. No. You are only required to register for NEC coverage. You must provide the WDID# in your NEC coverage PRDs in order for the State Water Board to change permit coverage status.

Q6. When and how often is a NEC coverage re-certification required?
INSTRUCTIONS FOR NO EXPOSURE CERTIFICATION (NEC)

A. Re-certification of NEC coverage is required annually (assuming the facility maintains its “No Exposure” status). The State Water Board will electronically transmit an NEC re-certification and annual fee notification to each facility operator who has filed for NEC coverage.

New Dischargers must register for NEC coverage before the commencement of facility operations. Dischargers that fail to file for NEC coverage or apply for NOI coverage before the commencement of facility operations will be out of compliance and subject to enforcement.

Existing Dischargers have two options for submitting NECs:

1. Facility operators of “light industrial” facilities who have been operating under their original, no-certification-required permitting exemption must submit the NEC at any time prior to October 1, 2015. Dischargers who have not submitted an NEC or applied for permit coverage by this due date will be considered out of compliance and subject to Water Board enforcement.

2. Dischargers who have NOI coverage may register for NEC coverage at any time following completion of facility changes that result in the condition of “No Exposure”.

Q7. What happens if I know of changes that may cause exposure?

A. If exposure has the potential to occur in the near future due to some anticipated change at the facility, the Discharger must obtain NOI coverage to avoid potential enforcement for violations of this General Permit.

Q8. Is the NEC coverage transferable to a new Discharger?

A. No. If a new operator takes over your facility, the new operator must register for new NEC coverage prior to the transfer. A new application fee is required.

Q9. What is the exclusion "conditional" upon?

A. The exclusion from permit coverage requirements is “conditional” upon the certification of the Discharger that the facility does not have exposure of materials or activities to storm water. PRDs for NEC coverage shall be electronically submitted to the State Water Board and will not be accepted if incomplete. The Regional Water Board may review the information, contact and/or inspect the facility, and invalidate the NEC and require the Discharger to obtain NOI coverage. PRDs are public documents and will be available for public review via SMARTS.

Q10. Can secondary containment around an outdoor exposed area qualify for a condition of “No Exposure”?

A. If secondary containment is engineered to always prevent a discharge of collected rainfall (based on the historical rainfall record) and a simultaneous spill of any other industrial materials or liquids, the “No Exposure” condition may be claimed. Note that there must be proper disposal of any water or liquids collected from the containment (i.e., discharged in compliance with another NPDES permit, treated and discharged to the sanitary sewer, or trucked offsite to an appropriate disposal/treatment facility).

D. NEC Checklist

An NEC Checklist must be prepared by the Discharger demonstrating that: (1) the facility has been evaluated, (2) none of the following materials or activities are, or will be in the foreseeable future, exposed to precipitation, and (3) all unauthorized NSWDs have been eliminated:

1. Using, storing or cleaning industrial machinery or equipment, and areas where residuals from using, storing or cleaning industrial machinery or equipment remain and are exposed;

2. Materials or residuals on the ground or in storm water inlets from spills/leaks;

3. Materials or products from past industrial activity;

4. Material handling equipment (except adequately maintained vehicles);

5. Materials or products during loading/unloading or transporting activities;

6. Materials or products stored outdoors (except final products intended for outside use, i.e., new cars, where exposure to storm water does not result in the discharge of pollutants);

7. Materials contained in open, deteriorated or leaking storage drums, barrels, tanks, and similar containers;

8. Materials or products handled/stored on roads or railways owned or maintained by the Discharger;

9. Waste material (except waste in covered, non-leaking containers, i.e., dumpsters);
10. Application or disposal of processed wastewater (unless already covered by an NPDES permit); and

11. Particulate matter or visible deposits of residuals from roof stacks/vents evident in the storm water outflow.
APPENDIX 3
WATERBODIES WITH CLEAN WATER ACT SECTION 303(D) LISTED IMPAIRMENTS

NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES)
GENERAL PERMIT FOR STORM WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITIES (GENERAL PERMIT)

The 303(d) impairments below are sourced from the 2010 Integrated Report. The rows in red are impairments for which industrial storm water Dischargers subject to this General Permit are not required to analyze for additional parameters unless directed by the Regional Water Board, because these parameters are typically not associated with industrial storm water. Test methods with substantially similar or more stringent method detection limits may be used if approved by the staff of the State Water Board prior to sampling and analysis and upon approval, will be added into SMARTS. The rows that are not in red are impairments for which Dischargers in the 303(d) impaired watershed are required to analyze for additional parameters, if applicable, because these parameters are more likely to be associated with industrial storm water. See General Permit Section XI.B.6.e. In the event that any of the impairments in this appendix are subsequently delisted, the Dischargers with discharges to that watershed are no longer required to analyze for the additional parameters for those impairments, and the provisions for new Dischargers with discharges to 303(d) impaired water bodies contained in Section VII.B of this General Permit no longer apply for those impairments.

The Excel spreadsheet containing the water bodies with 303(d) impairments is an attachment to this Appendix 3. To view the attachment from an electronic (pdf) version of this Appendix 3, left-click on the paper clip icon to the left of this pdf file to make the attachment window appear, then double-click on the icon of an Excel spreadsheet. The Excel spreadsheet is also available on the Industrial Storm Water program pages of the State Water Resources Control Board's website (http://www.waterboards.ca.gov/).